18.408 Topics in Theoretical Computer Science Fall 2022 Problem Set 1

- 1. Write down a generating matrix for the following codes:
 - (a) Reed-Solomon code over \mathbb{F}_q with n = q and degree d.
 - (b) The Hadamard code H_n .
- 2. In this problem, we will prove the Schwarz-Zippel Lemma for large fields, stating that for $q \ge d$, if $f: \mathbb{F}_q^m \to \mathbb{F}_q$ is a polynomial of total degree at most d not identically 0, then $\Pr_{x \in \mathbb{F}_q^n} [f(x) = 0] \le \frac{d}{q}$.
 - (a) Show that the statement of the Schwarz-Zippel Lemma holds for n = 1.
 - (b) Prove the Schwarz-Zippel Lemma (hint: you may use induction on *n*). Conclude that the relative distance of $\text{RM}_{m,d,q}$ is at least $1 \frac{d}{q}$.
 - (c) Show an example of a total degree d polynomial f for which the lemma is tight, i.e.

$$\Pr_{x \in \mathbb{F}_q^n} \left[f(x) = 0 \right] = \frac{d}{q}.$$

- 3. Let $f: \mathbb{F}_q^m \to \mathbb{F}_q$ be a polynomial whose total degree is greater than d and at most q-1. Show that there is a line $\ell(t)$, i.e. $\ell: \mathbb{F}_q \to \mathbb{F}_q^m$ of the form $\ell(t) = a + tb$ for some $a, b \in \mathbb{F}_q^m$, such that the univariate polynomial $f|_{\ell}: \mathbb{F}_q \to \mathbb{F}_q$ has degree greater than d.
- 4. In this problem, we will analyze the Hadamard code shown in class. For each v ∈ 𝔽ⁿ₂, we define the function h_v: 𝔽ⁿ₂ → 𝔽₂ by h_v(x) = ⟨v, x⟩, so that H_n = { (h_v(x))_{x∈𝔽ⁿ₂} v ∈ 𝔽ⁿ₂ is the Hadamard code.
 - (a) Show that for all $v \neq \vec{0}$, $\Pr_{x \in \mathbb{F}_2^n} [h_v(x) = 1] = \frac{1}{2}$. Deduce that the relative distance of H_n is $\frac{1}{2}$.
 - (b) Show that the rate of H_n is $\frac{n}{2^n}$.
- 5. The Quadratic Hadamard code is a variant of the Hadamard code defined above. For a vector $u, v \in \mathbb{F}_2^n$, we define $u \otimes v \in \mathbb{F}_2^{n \times n}$ as $(u \otimes v)_{i,j} = u_i v_j$. The Quadratic Hadamard code is then defined as

$$\operatorname{QH}_n = \left\{ \left(h_{v \otimes v}(x) \right)_{x \in \mathbb{F}_2^{n \times n}} \quad v \in \mathbb{F}_2^n \right\}.$$

- (a) Show that the relative distance of QH_n is $\frac{1}{2}$ and that the rate is $\frac{n}{2n^2}$.
- (b) Show that for all $x, y, u, v \in \mathbb{F}_2^n$ it holds that $\langle x \otimes y, z \otimes w \rangle = \langle x, z \rangle \langle y, w \rangle$.
- 6. (*) Show that there exist absolute constants $r \in \mathbb{N}$ and $\varepsilon_0 > 0$ such that the QH_n is $(r, O(\varepsilon), \varepsilon)$ locally testable for all $0 < \varepsilon \leq \varepsilon_0$.

18.408 Topics in Theoretical Computer Science: Probabilistically Checkable Proofs Fall 2022

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.