
18.408 Topics in Theoretical Computer Science Fall 2022
Lecture 9

Dor Minzer

In the last few lectures, we have described the sum-check protocol and low-degree testing problem, as
well as proved the correctness of the sum-check protocol (under the promise the assignment is a low-degree
polynomial), and the low-degree testing result in the 1% regime. Today, we will combine these two results
in order to prove a PCP theorem with poly-logarithmically many queries.

1 A PCP with poly(log n) Queries

To formalize PCPs is in a combinatorial language, we use the language of constraint satisfaction graphs.

Definition 1.1. A instance of constraint satisfaction graph (abbreviated CSG) consists of sets of nodes
X = {x1, . . . , xn}, an alphabet Σi for each node xi, a collection hyperedges E and a constraint Ce for
each edge e ∈ E. For each edge e ∈ E, writing e = (xi1 , . . . , xis), the constraint Ce can be any subset of
Σi1 × . . . × Σis ; these tuples are thought of as satisfying the constraint.

The alphabet size of an instance is maxi |Σi|, and the number of queries is the size of the largest hyper-
edge in the graph.

Given an instance of CSG, Ψ = (X, E, Σ, {Ce}e∈E), the goal is to find an assignment to the nodes
that satisfies as many of the constraints as possible. Namely, find a labeling A of X such that for as many
hyperedges e = (xi1 , . . . , xis) as possible we have that (A(xi1), . . . , A(xis)) ∈ Ce. The value of an instance
Ψ, denoted by val(Ψ), is the maximum fraction of constraints that can be satisfied by any assignment A.
Thus, in the problem gap-CSG[c, s] we are given an instance Ψ of CSG promised to either have val(Ψ) > c
or val(Ψ) < s, and the goal is to distinguish between these two cases.

We will often refer to hardness results for CSG as PCP constructions, and to measure the efficiency
of the PCP construction we will focus on the size of the alphabet, number of queries, completeness and
soundness parameters it achieves. In this language, we show:

Theorem 1.2 (PCP with poly-logarithmic number of queries). There are absolute constants c, C > 0 such
that gap-CSG[1, 1/ log(n)c] is NP-hard on instances with alphabet size and number of queries at most
log(n)C .

The proof of Theorem 1.2 proceeds by a reduction. The starting point of the reduction is the prob-
1lem gap-QS [1, √] (which we proved to be NP-hard), and we let (X, E) be an instance of q=log(n)100,r=n q

quadratic equations over field of size q = log(n)100 (where n is the number of variables). We produce an
instance Ψ of CSG in polynomial time as follows.

log(n)We choose d = |H| = log(n) and m = in the linearized sum-check protocol and writelog log(n)
X = Hm . For each e ∈ E, we run the linearized sum-check protocol. Namely we have A0 : Fm → Fqq
which is assumed to be the low-degree extension of an assignment of (X, E), and for each e we have an
auxiliary table Ge which consists of all of the partial sum function needed by the sum-check protocol. Then
the linearized sum-check protocol describes a collection tests in Ge and A0 that satisfies:

1

1. Each constraint contains two entries from A0, and at most (m + 1)d entries from Ge.

2. If A0 satisfies e, then all of them are satisfied,

3. Else, if A0 doesn’t satisfy e and is a function of total degree at most d, then at most 2md+1 of the q
constraints hold.

Thus, we will think of the entries of A0 and all of the tables Ge as nodes in our CSG instance Ψ, and of
the checks generated by the sum-check protocol as defining hyperedges and constraints on them. We are not
done with the description of Ψ, though; we must enforce that the table A0 is a function of total degree d for
our analysis of the linearized sum-check protocol to be of use. Towards this end, we will use our low-degree
testers.

In addition to the table A0, we will also have a table A2 which is supposed to consist of the restriction
of A0 to all planes in Fm . Namely, for each P ∈ S2(Fm), we include a new node, A2[P], in Ψ, and the q q
alphabet of this node corresponds to functions of total degree at most d over P .

Thus, our PCP will proceed as follows: we sample a test T in the linearized sum-check protocol. Recall
that to do so, we sample an equation e ∈ E and the randomness as in the linearized sum-check protocol, and

~ ~ ~ ~eventually check some quadratic equation in Ge, A0(i), A0(j); suppose it is given as h(Ge, A0(i), A0(j)) =
~0. Upon generating this equation, we sample a plane P containing i and ~j, query A2[P] and check that

~ ~A2[P](i) = A0(i). Thus, overall the constraint we generate in Ψ makes both of these checks: i.e. it reads
~ ~ ~ ~ ~ ~Ge, A0(i), A0(j) and A2[P] and checks that h(Ge, A0(i), A0(j)) = 0 and A2[P](i) = A0(i).

We have the following lemma, which establishes that Theorem 1.2 holds:

Lemma 1.3. The above PCP has the following properties:

1. Completeness: If (X, E) is satisfiable, then val(Ψ) = 1. Namely, there are tables {Ge}e∈E , A0 and
A2 that satisfy the above checks with probability 1. � �

2. Soundness: If (X, E) is at most ε satisfiable, then val(Ψ) 6 O (2md/q + ε)1/3 . Namely, any� �
{Ge}e∈E , A0 and A2 satisfy at most fraction O (2md/q + ε)1/3 of the constraints of Ψ.

Proof. The completeness is clear, and we move to the soundness.
For the soundness, suppose that we have {Ge}e∈E , A0 and A2 that pass all of the checks with probability

at least δ; denote by E the event that the above checks work. Note that by properties of the sum-check
~protocol, when we sample a check as above, the distribution of each one of i and ~j is uniform over Fm .q

2Let η > 0 to be determined, and let k =
η2 . Then by the low-degree testing theorem, we may find

f1, . . . , fk : Fm
q → Fq of total degree at most d such that h i

~ ~Pr A0(i) = A2[P](i), ∀`A2|P 6= f`|P 6 η.
~i∈P ∈S2(Fm)q � �

¯We denote by E0 the event that A2[P] = f`|P for some `. Then we get that Pr E ∧ E0 6 η, and so
Pr [E ∧ E0] > δ − η. It follows that there is `, such that the probability that replacing A0 by f`, we get that
the above checks are all satisfied with probability at least 1 (δ − η) > (δ−η)η

2
.k 2

However, since f` is of total degree at most d the analysis of the linearized sum-check protocol says
that it passes it with probability at most 2md+1 on equations of (X, E) which it doesn’t satisfy, and byq
assumption there are at most ε equation that it satisfies, so overall we must have that

(δ − η)η2 2md + 1
6 + ε.

2 q

Taking η = δ/2, we conclude the result.

2

2 Formalizations of PCPs

As discussed in the first lecture of this course, one can view a PCP from several different equivalent perspec-
tives. While they are equivalent, sometimes, depending on the context and application, it is more natural
to view PCP in one of the views rather than another. For the majority of the course, we will stick to the
combinatorial view, as formalized by constraint satisfaction graphs as above. You are encouraged, however,
to think above what we’ve seen in the course so far in the different views, and establish the equivalence
between them.

The combinatorial, constraint satisfaction view. In this lecture, we have chosen the combinatorial view
in which a PCP construction is thought as a hypergraph. The nodes of the graph represent variables and
each one of its edges is associated with a constraint on its nodes. The goal is to assign labels to the nodes of
the graph so as to satisfy as many of the constraints as possible. The parameters of most interest here are the
completeness (the fraction of constraints that can be satisfied in the YES case), the soundness (the fraction
of constraints that can be satisfied in the NO case), the alphabet size, the number of queries (the number
of alphabet symbols that need to be read to check constraints), and the instance size. In this language, we
achieved perfect completeness, i.e. 1, soundness (log n)−Ω(1), alphabet poly(log n), queries poly(log n) and
polynomial instance size, i.e. nO(1).

The verifier view. Another view is the verifier view, wherein we think of some NP statement, and the
verifier is given a proof π. The verifier selects randomly (in a correlated manner) a few locations in π,
checks that they satisfy some constraint, and if so the verifier accepts (and otherwise the verifier rejects).
One can define the same parameters as before, wherein the amount of random bits the verifier uses becomes
an important parameter; this parameter is analogous to the logarithm of the number of edges in the graph in
the combinatorial view.

The k-prover, verifier view. Finally, a third view of PCPs is when we have a polynomial time verifier
which wants to be convinced of some NP statement, and towards this end the verifier can ask questions to k
all powerful provers that cannot communicate with each other. In this view, one should think of the verifier
as generating locations in a supposed proof π, but since the verifier does not have a proof, he can send each
chosen location to one of the provers, and expect in return the value that was supposed to be in that location
in π. One can again discuss various analogous parameters to before, and in particular the number of provers
is the analog of the number of queries in the previous views.

3 What’s Ahead?

Theorem 1.2 is already a very substantial result in complexity theory. In fact, with some additional work
one can use it towards constructing a quasi-polynomial size PCP with constantly many queries and constant
alphabet size which can serve as the basis for many hardness of approximation results. The catch is that
these results would not be NP-hardness result, since the transformation from Theorem 1.2 to the constant

poly(log n)),queries, constant alphabet size PCP would require a quasi-polynomial time reduction (i.e. time n
so to be meaningful one would need to assume that NP has no quasi-polynomial time algorithms.

There are several avenues one may continue in their path of study in PCP, and below we outline a few
topics that will be discussed in the upcoming weeks.

3

1. Recursion: One can think of the sequence of reductions (sum-check, low-degree testing) we did as a
method that took us from a PCP with n queries over alphabet of size q (the gap version of Quadratic
equations from the second lecture), to a PCP with poly(log n), while incurring only small loses in
the soundness of the PCP and polynomial size blowup in the size of the instance. One may hope
that there is a way to recursively apply such process to get a PCP with poly(log log n) queries, then
poly(log log log n) and so on. This turns out to indeed be possible, analogously to the composition
step we saw in error correcting codes.

Doing so though, requires several more ideas as well as a great deal of care. We will present the
main ideas needed to carry out this composition, and in particular a technique called “aggregation of
queries”.

2. Reducing the number of queries to O(1): Once the number of queries in the PCP is sufficiently
small (poly(log log n) will do) one can use a code with much worse rate — more specifically the
Hadamard code — in order to reduce the number of queries to be constant. We will see this step in
the next few lectures.

3. Applications in hardness of approximation: Once we have establish a PCP with constantly many
queries and constant alphabet size, we will discuss some of their applications in hardness of approx-
imation. First we will see some of the more basic applications of it (such as hardness of Clique and
APX hardness of various problems), which will motivate the question of optimal hardness of approx-
imation results. This will lead us to discuss extreme forms of the PCP theorem, and in particular we
will discuss the parallel repetition theorem, the long-code framework and the Unique-Games Conjec-
ture.

As discussed above then, for the next installment in the course we shall assume the following improved
version of Theorem 1.2.

Theorem 3.1 (PCP with poly-loglog number of queries). There are absolute constants C, c > 0 such that
gap-CSG[1, 1/ log(n)c] is NP-hard on instances with alphabet size poly(log n) and number of queries at
most (log log(n))C .

Our focus on the next few lectures will be to deduce the following result, which is often referred to as
the basic form of the PCP theorem:

Theorem 3.2 (PCP with constantly many queries and constant alphabet). There is an absolute constant
ε > 0 such that gap-CSG[1, 1 − ε] is NP-hard on instances with alphabet size and number of queries at
most O(1).

4

MIT OpenCourseWare
https://ocw.mit.edu

18.408 Topics in Theoretical Computer Science: Probabilistically Checkable Proofs
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

	A PCP with poly(logn) Queries
	Formalizations of PCPs
	What's Ahead?

