
18.408 Topics in Theoretical Computer Science Fall 2022 
Lectures 4,5,6 

Dor Minzer 

In this lecture we make the frst step in the proof of the PCP theorem, and establish seemingly strong 
inapproximability result for solving quadratic equations. This construction though will not be local at all 
(each one will involve all of the variables), and we will turn our attention into improving upon the locality 
of the construction. Towards this end, we will present the sum-check protocol and low-degree extensions. 

1 Quadratic Solvability 

Defnition 1.1 (Quadratic-Solvability over Fq with locality r). For a feld Fq and r ∈ N, an instance of 
QS consists of a set of variables X = {x1, . . . , xn} and a set of equations E = {e1, . . . , em}, where q,r 
each equation e ∈ E is a quadratic equation in the X’s involving at most r of the variables. 

Given an instance of QS , the goal is to fnd an assignment to the variables, namely A : X → Fq, thatq,r 
satisfes as many of the equations as possible. 

For example, the following (X, E) is an instance of QSq,r: take X = {x1, . . . , xn} and the equations 
2x1x2 + x3 = 0, x1 − 7x4x5 + x2x3 = 2. 

Abusing notations we denote by QS the language consisting of all satisfable instances, namely q,r 

QS = {(X, E) | ∃A : X → Fq that satisfes all of the equations in E} .q,r 

We also consider the corresponding gap problem, QS [c, s] for 0 < s ⩽ c ⩽ 1, in which one is given anq,r 
instance promised to be at least c satisfable or at most s satisfable, and the goal is to distinguish between 
these two cases. 

We show that the Quadratic Solvability problem is NP-hard using the classical theory of NP-hardness. 
Then, we will use ideas from previous lectures, we show that the gap version of Quadratic Solvability is also 
NP-hard. 

1.1 NP-hardness of Quadratic Solvability 

First, we show that for some r ∈ N (r = 5 will be enough), the problem QSq,r is NP-hard for all q. The idea 
is to start with the NP-hard 3-SAT problem, and arithmetize the clauses as equations. 

Theorem 1.2. For r = 6 and any feld Fq, the problem QSq,r is NP-hard. 

Proof. We reduce from 3-SAT. Given a 3-CNF formula ϕ = C1 ∧ C2 ∧ . . . ∧ Cm, we construct an instance 
′ (X ′ , E ′ ) of quadratic solvability as follows. First, for every variable xi in ϕ we construct a variable x ini 

′ ′ ′ X . Second, for every pair of variables xi, xj we construct a variable xi,j in X . 
′We will want the variables xi to be Boolean valued (representing the value of xi), and want the value 

′ ′ ′of x to be equal to the value of xixj . To implement these we add the equations x = x 2 for all i andi,j i i 
′ ′ ′ x = x for all i, j.i,j ixj 
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Finally, we want to write down an equation that checks whether each clause in ϕ holds. Thus, fx C 
to be a clause in ϕ, and assume without loss of generality that C = (x1 ∨ x2 ∨ x3). Note that this can be 
equivalently written as an equation as (1 − x1)(1 − x2)(1 − x3) = 0, however this would be an equation 

′of degree 3. Instead, we expand the left hand side, and use our xi,j variables to express it as a quadratic 
′ ′ ′ ′ ′ ′ ′ ′equation: 1 − x1 − x2 − x3 + x1,2 + x2,3 + x1,3 − x1,2x3 = 0, and we add this equation to E ′ . We remark 

that if C has a negation in it, say C = (x̄1 ∨ x2 ∨ x3), then the same idea works replacing x1 with 1 − x1 

(starting with the equation x1(1 − x2)(1 − x3) = 0). 

Completeness. We show that if ϕ is satisfable, then (X ′ , E ′ ) is satisfable. Indeed, if A : {x1, . . . , xn} → 
′ ′ ′ {0, 1} satisfes all clauses in ϕ, then we can defne B : X → {0, 1} by setting B(xi) = A(xi) and B(xi,j ) = 

A(xi)A(xj ), and observe that then B satisfes all of the equations in (X ′ , E ′ ). 

Soundness. We have to show that if ϕ is unsatisfable, then (X ′ , E ′ ) is unsatisfable. Equivalently, we 
′show instead that if (X ′ , E ′ ) is satisfable, then ϕ is satisfable. Towards this end, suppose that B : X → Fq 

′ ′ ′satisfes all equations. Then in particular it satisfes that B(xi)
2 = B(xi) for all i, hence B(xi) ∈ {0, 1}, 

′ ′ ′ ′ ′and as B(xi,j ) = B(xi)B(xj ) we get that B(xi,j ) ∈ {0, 1} also, hence B : X → {0, 1}. We may therefore 
′defne A : {x1, . . . , xn} → {0, 1} by A(xi) = B(xi), and note that since B is Boolean and satisfes the 

equation associated with each clause of ϕ, it follows that A satisfes all of the clauses of ϕ. 

1.2 NP-hardness of Gap Quadratic Solvability 

Next, we show that how to use Theorem 1.2 to prove that the gap version of quadratic solvability is also 
NP-hard. Towards this end we need the following lemma. 

Lemma 1.3. Let m, n ∈ N and let q ⩾ 4 log(mn)2 , s = mnq. One can construct, in polynomial time, a 
1matrix M ∈ Fs

q 
×m such that the code generated by M has relative distance at least 1 − √ 

q . 

Proof. Consider the Reed-Solomon codes C1 = RSd=m,q=mn and C2 = RSd=log(mn),q, and note that the 
number of codewords in C2 is at least (log(mn))log(mn)2 

> mn, hence we may consider the composed code 
C = C1 ◦ C2 which has blocklength s; we do so using an appropriate linear function mapping symbols of 
C1 to codewords of C2, so that C is a linear code. Take a matrix M ∈ Fs×m to be a generating matrix of C.q 
We note that the relative distance of C1 is 1 − 1/n, and the relative distance of C2 is 1 − log(mn)/q, hence 
the relative distance of C is at least � �� � 

1 
1 − 

log mn 
1 − 

1
⩾ 1 − √ . 

n q q 

With this lemma in hand, we can now deduce from Theorem 1.2 that the gap version of the Quadratic 
Solvability problem is also NP-hard, albeit with very poor locality parameter. The idea is that, given a sys-
tem of equations as in Theorem 1.2, one can construct a new system of equations in which each equation 
is a linear combination of equations from the original system. One can show, for instance, that if we take 
suffciently many independently chosen random linear combinations of equations, then a satisfable system 
would be mapped to a satisfable instance, and an unsatisfable instance would be mapped to a highly unsat-
isfable instance. We will see that a pre-determined set of linear combinations that are dictated by the rows 
of the matrix M constructed in Lemma 1.3 also does the job. 

1Theorem 1.4. For q ⩾ 4 log(mn)2 , the problem gap-QSq,n[1, √ 
q ] is NP-hard. Here, n stands for the 

number of variables in the system and m stands for the number of equations in the system. 
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1Proof. We show a polynomial time reduction from QSq,6 to gap-QS [1, √ ], which by Theorem 1.2 q,r=n q 
1implies that gap-QS [1, √ ] is NP-hard. Given an instance (X, E) of QSq,5, we construct in polynomial q,n q 

time an instance (X ′ , E ′ ) of quadratic solvability such that 

1. If (X, E) is satisfable, then (X ′ , E ′ ) is satisfable. 

12. If (X, E) is unsatisfable, the (X ′ , E ′ ) is at most √ -satisfable. q 

Towards this end, construct a matrix M ∈ Fs×m as in Lemma 1.3 where s = mnq. We defne (X ′ , E ′ ) byq 
′taking X = X , and associating with each row of M an equation. In words, we think of (X, E) as a system 

of equations and then take linear combinations of them as indicated by the matrix M . More precisely, 
writing E = {e1, . . . , em} and thinking of the equation ej as fj (x) = bj , the ith equation in (X ′ , E ′ ), 

′denoted by e , is given byi 
mX X 

Mi,j fj (x) = Mi,j bj . 
j=1 j 

Completeness. Suppose that (X, E) is satisfable, and let A : X → Fq be a satisfying assignment. Then 
A satisfes any equation which is the result of linear combination of equations in (X, E), and hence satisfes 
(X ′ , E ′ ). 

′Soundness. Suppose (X, E) is unsatisfable, and let A : X → Fq be some assignment. Then A does not 
satisfy all of the equations in (X, E), hence defning the vector v ∈ Fm by vj = fj (A) − bj gives us that vq 
is not the all 0 vector. Hence, Mv is a codeword in the code generated by M which is not identically 0, so 

1by the distance of the code generated by M it follows that (Mv)i ̸= 0 on all but √ fraction of i = 1, . . . , s. q 
m 

1 P
In other words, for all but √ of i’s we have that Mi,j (fj (x) − bj ) ≠ 0, implying that A satisfes at most q 

j=1 
1√ of the equations in (X ′ , E ′ ). q 

In the proof of Theorem 1.4 we managed to get a gap between the completeness and the soundness case 
(and quite a large one), however as is clear from the proof, both the alphabet size (the feld size) and the 
number of queries (i.e. the number of variables each equation depends on) are large, and we will want to 
reduce them. 

It is possible to reduce both the locality and the alphabet size to be O(1) straightaway from Theorem 1.4, 
however this will result in a non polynomial size PCP (in fact exponential), and we will discuss this point 
later on in the course. Our proof of the PCP theorem will eventually use this idea, however in order to keep 
the reduction to be poly-time, it is important to frst suffciently reduce the number of queries and alphabet 
(just as we did in error correcting codes), say to be poly(log log n), and only then use such ideas. 

2 Query Reduction via the Sum-check Protocol and Low-degree Extensions 

We now turn our attention into developing the sum-check protocol, which is the key primitive that facilitates 
query reduction in algebraic PCP constructions. 

Let q = poly(log(mn)), and consider the natural verifer in the setting of gap-QS [1, 1/ 
√ 
q]. Therein,q,n 

the verifer has oracle access to an assignment A : {x1, . . . , xn} → Fq, and his task is to verify that many 
of the equations in the given instance (X, E) are satisfed. For that, the verifer can pick an equation e ∈ E 
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randomly and check whether A satisfes it or not. The issue with this approach is that the verifer has to read 
the entire table of values of A to execute this plan, since each equation e ∈ E depends on all of the variables 
of the system. The question is, therefore, how can the verifer check whether an equation of the form 

n nX X 
ai,j xixj + bixi = c 

i=1,j=1 i=1 

holds, while making less queries to A? This is clearly impossible if the verifer is only given access to A, 
but it turns out to be possible if the verifer is supplied with additional information! 

2.1 The Low-degree Extension 

Towards this end, let H ⊆ Fq be a set whose size is to be determined shortly, and let m ∈ N be an integer 
log nso that |H|m = n. For this, it suffces to take d = |H| = log(n) and m = . Thus, we can identify the log log n 

set of variables [n] with the cube Hm, and re-indexing them accordingly the above equation becomes X X 
a⃗  x⃗  · x⃗ + b⃗ x⃗  = c. (1)i,⃗j i j i i 

i⃗,⃗j∈Hm i⃗∈Hm 

Thinking of the assignment A now in these notations, we have that A : Hm → Fq. It is clear that A may be 
extended to the entire domain Fm

q in many ways, however there is one extension, the so-called low-degree 
extension, which will be of utmost important to us. Roughly speaking, this is the extension of A that as a 
polynomial has as small as possible individual degrees. To present and prove some of its basic properties, 
we frst introduce two basic facts about low degree polynomials that will be used many times in this course. 

We begin with the classical Schwarz-Zippel lemma. 

Lemma 2.1. Suppose that f : Fm → Fq is a non-identically 0 polynomial of total degree d, and let S ⊆ Fq.q 
Then 

Pr [f(x) = 0] ⩽ 
d
. 

x∈Sm |S| 

Proof. See problem set 1. 

We will also need a version of this lemma for individual degrees, as follows. 

Lemma 2.2. Suppose that f : Fm → Fq is a non-identically 0 polynomial of individual degrees at most rq 
and |H| ⩾ r + 1. Then there is x ∈ Hm such that f(x) ̸= 0. 

Proof. The proof is by induction on m. For m = 1, this follows from the fundamental theorem of algebra. 
Assume m > 1, and write 

rX 
f(z1, . . . , zm) = zj fj (z1, . . . , zm−1),m 

j=0 

where for each j = 0, . . . , r, the function fj → Fm−1 → Fq is a polynomial of individual degrees at most q 
r. Since f is not-identically 0, there is j such that fj ̸≡ 0, and by the induction hypothesis we may fnd a 
setting (x1, . . . , xm−1) ∈ Hm−1 such that fj (x1, . . . , xm−1) ̸= 0. Thus, fxing these values the polynomial 
f(x1, . . . , xm−1, zm) is a univariate polynomial of degree at most r in zm, hence by the base case we may 
fnd a setting zm = xm ∈ H on which it doesn’t vanish, and the proof is concluded. 
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We can now prove the existence and uniqueness of the low degree extension of an assignment. 

Claim 2.3. For any A : Hm → Fq, there is a unique Aextension : Fm → Fq such that q 

1. A(z) = Aextension(z) for all z ∈ Hm . 

2. Aextension is a polynomial whose individual degrees are all at most |H| − 1. 

Proof. The construction of Aextension is by interpolation. For each z ∈ Hm , we can defne a function 
ℓz : Fm → Fq of individual degrees at most |H| − 1 such that supp(ℓz) ∩ Hm = {z}. Indeed, one just takes q 

mY Y xi − a 
ℓz(x) = , 

zi − a 
i=1 a∈H\{zi} 

and note that supp(ℓz) ∩ Hm = {z}, that ℓz(z) = 1 and that the individual degrees of ℓz are all |H| − 1. We 
can thus defne X 

Aextension(x) = A(z)ℓz(x), 
z∈Hm 

and note that Aextension has individual degrees at most |H| − 1 and Aextension(z) = A(z)ℓz(z) = A(z) for 
z ∈ Hm . This proves the existence part of the claim. 

For the uniqueness, suppose A ′ and A ′′ are two distinct functions satisfying the claim, and consider 
− A ′′ B = A ′ . Then B has individual degrees at most |H| − 1, and B vanishes on Hm , and by Lemma 2.2 

it follows that B ≡ 0. 

The function Aextension is often referred to as the low-degree extension of A and it plays a crucial role 
in the sum-check protocol. Instead of giving the verifer only access to the assignment A, we shall give him 
access to Aextension in the hope that this will help us in cutting down on the number of queries. Let us remark 
frst that, formally speaking, the verifer is only given oracle access to some assignment B : Fm → Fq whichq 
is supposed to be the low-degree extension of A. Thus, the verifer will also need to make sure, somehow, 
that B is indeed a low-degree function; this is where the low-degree testing problem enters the picture. We 
ignore this issue for now, assuming the verifer is able to ensure that B is a low-degree function, and show 
how the protocol proceeds then. In upcoming lectures, after developing the low-degree testing machinery, 
we will remove this assumption. 

2.2 The Sum-Check Protocol 

We are now going to make use of our low-degree extension Aextension to verify that the equation X X 
+ = c (2)ai,j x⃗i · xj⃗ bix⃗i 

i⃗,⃗j∈Hm i⃗∈Hm 

holds using much fewer queries than n. Towards this end, defne the intermediate functions fs : H2s → Fq 

for s = 0, 1 . . . ,m by1 X X 
fs(i1, . . . , is, j1, . . . , js) = a A(α⃗ ) · A(β⃗) + 

1 
bα⃗ A(α⃗ ). (3)

α,⃗ β⃗ |H|s 
α⃗ ∈Hm,αℓ=iℓ, α⃗ ∈Hm,αℓ=iℓ for ℓ = 1, . . . , s 
β⃗∈Hm,βℓ=jℓ 
for ℓ = 1, . . . , s 

11By |H|s , we mean the inverse of |H|s ∈ Fq . 
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In words, the function fs represents partial sums similar to the ones in (2) in which a prefx of the indices i⃗ 
and ⃗j has been fxed to be according to the input of fs. 

Note that in this language, the equation that we want to verify is that f0 = c. Additionally, note that we 
have, for all s, that X 

fs(i1, . . . , is, j1, . . . , js) = fs+1(i1, . . . , is, is+1, j1, . . . , js, js+1), (4) 
is+1,js+1∈H 

and that 

fm(i1, . . . , im, j1, . . . , jm) = ai1,...,im,j1,...,jm A(i1, . . . , im) · A(j1, . . . , jm) + b11,...,1m A(i1, . . . , im). (5) 

Finally, note that the function fm is composed only of O(1) entries of A (to be exact, 2). 
This suggests a recursive approach: to verify that f0 = c, reduce that to verifying f1(i1, j1) = ci1,j1 

for some i1, j1, further reduce that to f2(i1, i2, j1, j2) = ci1,i2,j1,j2 for some i1, i2, j1, j2, and continue until 
we need to verify some value of fm, which can be done by appealing to the table of values A. To carry out 
this recursion though we need some redundancies, hence we consider the low-degree extensions of each fs. 
Abusing notations, we will refer to the low-degree extension of fs by the same notation, fs : F2s → Fq, and q 
we can now present the sum-check protocol. 

The inputs to the sum-check protocol are the assignment A0 : Fm → Fq which has individual degrees at q 

most |H| − 1, as well as functions g : F2 → Fq for each s = 1 . . . ,m and i⃗ ′ , j⃗ ′ ∈ Fs−1 of individual s,⃗i ′ ,⃗j ′ q q 
degrees at most |H| − 1. The goal is to verify that A0 satisfes (1), and the intention is that g is the s,⃗i ′ ,⃗j ′ 

restriction of function fs where the frst s − 1 coordinates of i and of j are set according to ⃗i ′ and ⃗j ′ . We 
proceed as follows: 

1. Verify that g0 = c, else reject. P 
2. Verify that ∈H g1(h, h ′ ) = g0, else reject. h,h ′ 

3. Set s = 1. 

4. While s ⩽ m: 

(a) Choose is, js ∈ Fq randomly, let i⃗ ′ = (i1, . . . , is) and ⃗j ′ = (j1, . . . , js).s sP 
(b) Verify that ⃗ ⃗ (h, h ′ ) = g ⃗ ⃗ (is, js), else reject. h,h ′ ∈H gs+1,i ′ ,j ′ s,i ′ j ′ s s s−1, s−1 

(c) Increase s by 1. 

5. Verify that2 

g i⃗ ′ j⃗ ′ (im, jm) = ai1,...,im,j1,...,jm A0(i1, . . . , im) · A0(j1, . . . , jm) + bi1,...,im A0(i1, . . . , im),m, m−1, m−1 

else reject. 

Below we prove the correctness of the Sum-check Protocol. 
2We remark that here, the coeffcients ai1,...,im,j1,...,jm are the low-degree extension of the original coeffcients 

ai1,...,im,j1,...,jm for i1, . . . , im, j1, . . . , jm ∈ H. In contrast to the functions fs and Aextension, the verifer is aware of all of 
the values of these coeffcients, hence he can compute the low degree extension. 
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Lemma 2.4. Suppose that A0 : Fm → Fq is a function with individual degrees at most |H| − 1, andq 
⃗gs,⃗i ′ ,⃗j ′ : F

2 
q → Fq for s = 0, . . . ,m, i⃗ ′ , j ′ ∈ Fs

q 
−1 are functions of individual degrees at most |H| − 1. 

Then 

1. Completeness: If A0 is the low degree extension of an assignment satisfying (1), and the functions 
g i ′ j ′ are equal to the appropriate restrictions of the functions fs defned above for A0, then the s,⃗  ,⃗  

sum-check protocol accepts with probability 1. 

2. Soundness: if A0 doesn’t satisfy (1), then the sum-check protocol accepts with probability at most 
2dm . q 

Proof. We begin by proving the completeness of the protocol. 

Completeness. It is clear that the protocol passes the frst checks, and we analyze the checks in the fourth 
and ffth steps. We focus on the fourth item as the arguments are the same. For notational simplicity, we do 
the proof for s = 1; the argument is identical for s > 1. By (4), we have that X 

f1(i, j) = f2(i, h, j, h ′ ) 
h,h ′∈H 

for all i, j ∈ H. From the uniqueness of the low-degree extension of both sides, as function of i, j, it follows 
that the low degree extension of the left hand side is equal to the low degree extension of the right hand side. 

′However, since taking low-degree extension is a linear operator (i.e., the low degree extension of f + f is 
the sum of the low degree extension of f and the low degree extension of f ′), it follows that X X 

g1(i, j) = f1(i, j) = f2(i, h, j, h ′ ) = g2,i,j (h, h ′ ) 
h,h ′ ∈H h,h ′ ∈H 

for all i, j ∈ Fq. 

Soundness. For A0, we denote by fs the functions as defned by (3) for A0, and abusing notation we also 
denote their low degree extension by fs. We begin with an informal explanation of the argument. If the sum 
check protocol accepts, then the check that g0 = c passes, but as A0 does not solve (1) it follows that f0 ≠ c, 
hence g0 ̸= f0. Then, the protocol checks that the sum of values of g1 is g0, and by defnition the sum of 
values of f1 is f0; thus, as g0 ≠ f0, it follows that g1 ̸= f1, and hence choosing random i, j ∈ Fq gives 
with high probability that g1(i, j) ̸= f1(i, j). Repeating this argument, we get that with high probability the 
value of gm we look at does not coincide with the value of fm, however the last check in the process verifes 
exactly that, hence the protocol would reject. 

Formally, let Es be the event that 

g , js (⃗is 
′
−1, is, j⃗s 

′
−1, js),s,⃗i ′ j⃗ ′ (is ) = fs 

s−1, s−1 

and let E be the event that the sum-check protocol accepts. First, note that E ⊆ Em; indeed, if the sum-
check protocol accepts, the last check passing is equivalent to the fact that Em holds. It follows that " # 

m m m[ X � � X � �
¯Pr [E] = Pr Es ∩ E ⩽ Pr Es−1 ∩ Es ∩ E ⩽ Pr Es ∩ E | Ē 

s−1 . 
s=1 s=1 s=1 
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If Es−1 fails, then g (is−1, js−1) ̸= fs−1(⃗is 
′
−2, is−1, j⃗s 

′
−2, js−1), so for the check of the sum-s−1,⃗i ′ j⃗ ′ s−2, s−2 

check protocol to pass in iteration s, it must be that the functions g (⋆, ⋆) and fs(⃗is 
′
−1, ⋆, j⃗s 

′
−1, ⋆)s,⃗i ′ j⃗ ′ s−1, s−1 

are different (else, the sum of g ⃗ (h, h ′ ) over h, h ′ ∈ H would be fs−1(⃗is 
′
−2, is−1, j⃗s 

′
−2, js−1) as s,⃗i ′ j ′ s−1, s−1 

opposed to g (is−1, js−1)). Thus, these are distinct univariate polynomials of degree at most s−1,⃗i ′ j⃗ ′ s−2, s−2 

2(|H| − 1), and the probability of Es is the same as the probability that these two functions agree on 
randomly chosen is, js ∈ Fq, which is at most 2(|H|−1) . We conclude that q 

m mX � � X 2 |H| 2m |H| 2dm 
Pr [E] ⩽ Pr Es ∩ E | Ē 

s−1 ⩽ = ⩽ . 
q q q

s=1 s=1 

So how can we use Lemma 2.4 towards improving upon the locality of the equations that we check? 
Note that overall, the protocol makes (|H| + 1)m calls to functions for the g-functions, and 2 queries to 
the assignment A0. Thus, overall the protocol makes O(log(mn)2) queries to the input tables; this is much 
better than the Θ(n) we started with! 

The most pressing issue is that for Lemma 2.4 to be useful, we must guarantee that the assignment A0 

and the tables g are all polynomials of individual degrees at most |H| − 1. How do we do that? Well, s,⃗i ′ ,⃗j ′ 

for the tables g this is quite easy in fact; we can represent the function g simply by its coeffcients. s,⃗i ′ ,⃗j ′ s,⃗i ′ ,⃗j ′ 

Each one of the functions g is only a bi-variate function, so we can represent it by its |H|2 coeffcients, s,⃗i ′ ,⃗j ′ 

which is still a poly-logarithmic number of symbols. Hence we can force it to be low-degree just by design. 
The same cannot be said about A0; if we simply represented it by its list of coeffcients we would be back 
to square one since there are |H|m of them, which is polynomially large. We therefore need to fnd some 
other way of representing a low-degree, multi-variate polynomial in a way that enables us to check that it 
is indeed a low-degree polynomial while reading much less information. This will be the topic of the next 
lecture. 

2.3 Linearizing the Sum-check Protocol 

To fnish the discussion about the sum check protocol, it will be convenient for us to transform the check 
made by the sum-check protocol into a single quadratic equation (as opposed to as it currently is as an AND 
of several equations), and to do so we proceed as follows. 

Fix the equation e that we run the sum-check protocol, and let Ge be the table of coeffcients for all the 
g-functions encountered throughout the protocol. We note that the randomness of the sum-check protocol is 
i⃗ = (i1, . . . , im) ∈ Fm and ⃗j = (j1, . . . , jm) ∈ Fm, and fxing the randomness of it, the protocol checks anq q 
AND of m linear equations over Ge, as well as a quadratic equation involving several entries from Ge and 
two entries from A0. We denote as e⃗  . . . , e⃗  , and we think of them as h⃗  (Ge, A0(⃗i), A0(⃗j)) = 0i,⃗j,1 i,⃗j,m+1 i,⃗j,ℓ 
for ℓ = 1, . . . ,m + 1. We know that each equation e⃗  involves at most poly(log n) entries from Ge, andi,⃗j,1 
e⃗  at most poly(log n) entries from Ge and 2 entries of A0.i,⃗j,m+1 

In this language, we have proved that assuming A0 is a low-degree function that satisfes e, with prob-
ability 1 all of the equations e⃗  are satisfed; else with probability at most md all of the equations arei,⃗j,ℓ q 
satisfed. Instead of checking if all of the equations e⃗  j,ℓ, we can take a random linear combination of them i,⃗  

m+1P 
v ∈ Fm+1and check it. Namely, for each ⃗  , we consider h⃗  = vℓh⃗  , and note that: q i,⃗j,v⃗ i,⃗j,ℓ 

ℓ=1 

1. If Ge, A0 are such that all of e⃗  are satisfed, then h⃗  (Ge, A0(⃗i), A0(⃗j)) = 0.i,⃗j,ℓ i,⃗j,v⃗ 
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2. Else, at least one of e⃗  is not 0. In that case, the vector ⃗h = (h⃗  (Ge, A0(⃗i), A0(⃗j)))ℓ=1,...,m+1 isi,⃗j,ℓ i,⃗j,ℓ D E 
not the all 0 vector, and hence h⃗  (Ge, A0(⃗i), A0(⃗j)) = h⃗, ⃗v ≠ 0 with probability 1 − 1 .i,⃗j,v⃗ q 

We thus present the linearized sum-check protocol. Given an equation e and inputs A0, Ge as to the 
sum-check protocol, run the sum-check protocol to generate h⃗  as above, sample v⃗ ∈ Fm uniformly, andi,⃗j,ℓ qD E 
check that v⃗, h⃗ = 0 for ⃗h = h⃗  (Ge, A0(⃗i), A0(⃗j)).i,⃗j,ℓ 

mNote that the number of v’s is q = poly(n, m), hence for each equation e in the original system this 
protocol generates polynomially many equations, so overall the number of equations in the new system is 
polynomial in n and m. Also, we have the following properties: 

Lemma 2.5. Suppose that A0 : Fm
q → Fq is a function with individual degrees at most d−1, and g i ′ j⃗ ′ : Fq 

2 → s,⃗  , 

Fq for s = 0, . . . ,m, i⃗ ′ , j⃗ ′ ∈ Fs−1 are functions of individual degrees at most |H| − 1. Thenq 

1. Completeness: If A0 is the low degree extension of an assignment satisfying (1), and the functions 
g are equal to the appropriate restrictions of the functions fs defned above for A0, then the s,⃗i ′ ,⃗j ′ 

linearized sum-check protocol accepts with probability 1. 

2. Soundness: if A0 doesn’t satisfy (1), then the linearized sum-check protocol accepts with probability 
at most 2dm+1 . q 
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