
18.408 Topics in Theoretical Computer Science Fall 2022
Lectures 22,23

Dor Minzer

Today, we will present a reduction from Unique-games to Max-cut which shows that, assuming the
Unique-Games Conjecture, the Goemans-Williamson algorithm achieves essentially the best approximation
ratio for Max-cut (among polynomial time algorithms). Towards this end we further discuss the long code
framework, and the notions of “influences” and “low-degree influences” from analysis of Boolean functions.

1 The Long-code Framework, Influence Style

1.1 Motivation

Recall that the hardness result we showed for 3Lin began by constructing a local tester for the long code with
the properties that: (1) codewords of the long code pass the test with probability close to 1, and (2) any word
that passes the test with probability significantly more than 1/2 can be associated with a few (constantly
many) long code codewords.

To be more specific, we managed to design a test that if a function f : {−1, 1}n → {−1, 1} passes
with probability 1/2 + δ then there is a Fourier character α ∈ F2

2 of size Oε,δ(1) such that
∣∣∣f̂(α)∣∣∣ ⩾ 2δ.

Thus, we thought of the support of α as the set of potential dictators (with which we can associate longcode
codewords) that f is associated with. This is a rather ad-hoc way of arriving at dictator — is there a more
natural and direct notion that captures our association to long code codewords?

It turns out that the answer is yes, and in fact this more general notion is critical to prove many other
hardness of approximation results. In particular, it is essential for the reduction we will see today from
Unique-games to Max-cut. To present, we will first consider the Max-cut problem and design a local tester
for the long code using the Max-cut predicate. Such local testers for the long code often go by the name
dictatorship tests.

1.2 A Dictatorship Tester for Max-cut

Recall that in the Max-cut problem the input is a graph G = (V,E), and we wish to partition the vertices into
two sides so that the number of edges crossing from one side to the other is maximized. Alternatively, we
may view this problem as a constraint satisfaction problem, as follows. With each vertex v ∈ V we associate
a variable xv which is supposed to be label by either 1 or −1, and with each equation e = (u, v) ∈ E
we associate the equation xu ̸= xv. The goal now is to label the variables by labels from {−1, 1} and
satisfy as many of the equations as possible. Thus, we see that the predicate corresponding to Max-cut is
P : {−1, 1}2 → {0, 1} defined as P (a, b) = 1a̸=b.

We now wish to design a dictatorship tester for the long-code using this predicate. In other words, we
way to construct a distribution µ over {−1, 1}n × {−1, 1}n such that:

1

1. Long code codewords pass the test with probability close to 1: if f : {−1, 1}n → {−1, 1} is a dictator,
that is, f(x) = xi for some i ∈ [n], then the probability that P (f(x), f(y)) = 1 for (x, y) ∼ µ is
large c.

2. Far-from-long code codewords pass the test with noticeably smaller probability: if f : {−1, 1}n →
{−1, 1} doesn’t look like a dictator at all, then the probability that P (f(x), f(y)) = 1 for (x, y) ∼ µ
is at most s, where s is much smaller than c.

Indeed, constructing such dictatorship tests is often a key step in proving a hardness of approximation results
(not only for Max-cut), but in general converting such tests into a proper hardness of approximation results
is a non-trivial tasks by itself.

In this language, the power of the Unique-Games Conjecture is that it allows one to bypass this last
hurdle, and indeed if one is willing to assume this conjecture there is almost an immediate translation
between dictatorship tests and hardness of approximation results. We will not show this connection in full
generality and instead focus on the case of Max-cut.

1.3 Influences

To make the question more precise we must clarify what we mean by “doesn’t look like a dictator at all”.
For this we define the notion of influences of coordinates on a function f that capture how much the value
of f depends on the ith coordinate of its input.

Definition 1.1. Let f : {−1, 1}n → {−1, 1} be a function, and i ∈ [n] be a coordinate. The influence of i
is defined as

Ii[f] = Pr
x∼{−1,1}n

[f(x) ̸= f(xei)],

where xei is the point x with the ith coordinate flipped.

Note that if f is a dictatorship, say f(x) = x1, then I1[f] = 1 and Ii[f] = 0 for any other i. Thus, we
can think of the influence of a coordinate i as measuring “how much f is alike the dictator i”. Though this
is not completely precise, this turns out to be a good and useful notion to consider for the purposes of PCPs.
Let us consider a few examples:

1. Parity functions. If f(x) = x1x2 · · ·xd, then the influence of each i ∈ [d] is 1, and the influence of
any other variable is 0.

2. The Majority function. Suppose n is odd, and define f(x) = 1 if
n∑

i=1
xi > 0 and f(x) = −1

otherwise. What is Ii[f]? Well, by symmetry it is clear that all of the influences of f are equal, so we
fix i = 1. Note that sampling x ∼ {−1, 1}n, the probability that f(x) ̸= f(xe1) is the probability that
n∑

i=1
xi changes its sign when we change x1. Thus, it must be the case that

n∑
i=2

xi = 0, which happens

with probability (
n−1

(n−1)/2

)
2n−1

≈
√

2

π

1√
n

Definition 1.2. Let f : {−1, 1}n → {−1, 1} be a function, i ∈ [n] be a coordinate and τ > 0. We say f has
τ -small influences if for all i ∈ [n], Ii[f] ⩽ τ .

2

1.4 Constructing the Dictatorship Tester

With the notion of influence in mind, we can now re-phrase the question above more precisely. We wish to
construct a distribution µ over {−1, 1}n × {−1, 1}n such that:

1. Long code codewords pass the test with probability close to 1: if f : {−1, 1}n → {−1, 1} is a dicta-
torship

Pr
(x,y)∼µ

[f(x) ̸= f(y)] ⩾ c.

2. Far-from-long code codewords pass the test with noticeably smaller probability: if f : {−1, 1}n →
{−1, 1} has τ -small influences, then

Pr
(x,y)∼µ

[f(x) ̸= f(y)] ⩽ s+ o(1),

where the o(1) goes to 0 as τ goes to 0.

3. c and s are far apart.

A natural idea is to take the distribution µ to be the uniform distribution over (x, y) such that y = −x,
and for this distribution it is clear that one gets that c = 1. However, this distribution fails the second
property, as any odd function pases this test with probability 1; for example, majority. How can we change
this distribution so as to penalize majority (yet keep the performance of dictatorship functions relatively
untouched)?

Recall that in the 3-Lin lecture, we wanted to distinguish between low-weight Hadamard codewords
and high-weight Hadamard codewords, and for that we applied the noise test. We noticed that long-code
codewords only get slightly penalized, whereas high weight Hadamard codewords get heavily penalized.
Why shouldn’t we try such idea?

More precisely, consider the distribution µ over (x, y) where we pick x ∼ {−1, 1}n uniformly, set
z = −x and then sample y to be a noisy version of z. That is, for each i ∈ [n] independently set yi = zi
with probability 1 − ε, and otherwise sample yi uniformly from {−1, 1}. In other words, we flip all of the
coordinates of x (so that checking “equality” turns into checking “inequality”), and then apply noise.

What can we say about this test, then? If f is a dictatorship, say f(x) = x1, then f(x) = x1 and
f(y) = y1, so the test fails only if we resampled the first coordinate and got a different value than the
original one, which happens with probability ε · 1

2 . Hence, we get that c = 1− ε/2.
What about functions f that have τ -small influences? Intuitively, such functions must depend on many

coordinates, so we expect that a slight noise will have several “chances” to change the value of f at a point
x. Namely we expect that f(x) ̸= f(y) with probability noticeably bigger than ε. Indeed, this is correct and
is the content of the “Majority is Stablest” theorem:

Theorem 1.3 (Majority is Stablest). For all ε > 0 and η > 0, there is τ > 0 such that the following holds.
Suppose that f : {−1, 1}n → {−1, 1} is a function such that E[f] = 0 and maxi Ii[f] ⩽ τ . Then

Pr
(x,y)∼µ

[f(x) ̸= f(y)] ⩽ 1− 1

π
Arccos(1− ε) + η.

The proof of this result goes beyond the scope of this course, and we will use it in a black-box way.
Recalling that Arccos(1−ε) =

√
2ε+O(ε), we get that s = 1−

√
2

π

√
ε+O(ε), hence we get a gap between

c and s in the potential dictatorship test above.
We summarize the properties of the dictatorship test µ:

3

1. If f : {−1, 1}n → {−1, 1} is a dictatorship, then

Pr
(x,y)∼µ

[f(x) ̸= f(y)] ⩾ 1− ε/2

for large c.

2. If f : {−1, 1}n → {−1, 1} has τ -small influences, for sufficiently small τ ⩽ τ0(ε, η), then

Pr
(x,y)∼µ

[f(x) ̸= f(y)] ⩽
1

π
Arccos(ε− 1) + η.

We will convert this dictatorship test into a hardness of approximation result for Max-cut, and get that
approximating Max-cut within any factor larger than α = maxε>0

1−Arccos(1−ε)/π
1−ε/2 is NP-hard (assuming the

Unique Games Conjecture). Note that α is the approximation ratio that the Goemans-Williamson algorithm
achieves, hence we would get that the Goemans-Williamson approximation algorithm for Max-cut is tight!

1.5 A Majority is Stablest Result for Bounded Functions

To use the above ideas in a reduction and to carry out the analysis, it will be necessary for us to consider
an arithmetic expression that measure the size of the cut defined by f , that is, Pr(x,y)∼µ [f(x) ̸= f(y)]. We
will also need to generalize this quantity as well as the Majority is Stablest theorem for functions that get
values in [−1, 1] (as opposed to only {−1, 1}).

Note that for {−1, 1}-valued functions, we have that f(x)f(y) = −1 if f(x) ̸= f(y) and otherwise it
is 1, hence we can write that

Pr
(x,y)∼µ

[f(x) ̸= f(y)] =
1

2
E

(x,y)∼µ
[1− f(x)f(y)].

The expression on the right hand side makes sense for general functions, and we will use it as our general-
ization.

Definition 1.4. Let ρ ∈ [0, 1], and let x ∈ {−1, 1}n. The distribution over ρ-correlated points with x,
denoted by Tρx, is defined by the following randomized process: for each i ∈ [n] independently, set yi = xi
with probability ρ, and otherwise sample yi uniformly from {−1, 1}.

For ρ ∈ [−1, 0] and x ∈ {−1, 1}n, the distribution over ρ-correlated points with x, denoted by Tρx, is
−T−ρx. In other words, we sample y ∼ T−ρx and output −y.

With this terminology in mind, we define the stability of f :

Definition 1.5. Let ρ ∈ [−1, 1] and f : {−1, 1}n → [−1, 1] be a function. We define

Stabρ(f) = E
x∼{−1,1}n

y∼Tρx

[f(x)f(y)].

Thus, for Boolean-valued f we have that Pr(x,y)∼µ [f(x) ̸= f(y)] = 1
2−

1
2Stab−1+ε(f). With the notion

of stability in mind we can state the majority is stablest theorem for bounded functions, but for technical
reasons we shall need to replace the notion of influences with the notion of low-degree influences.

4

1.5.1 Fourier Coefficients, Influences and Low-degree Influences

Recall the discrete Fourier transform of f : {−1, 1}n → {−1, 1} is given as

f(x) =
∑
α∈Fn

2

f̂(α)χα(x).

The influences of a function f can be related to its Fourier transform as follows:

Claim 1.6. For f : {−1, 1}n → {−1, 1} and i ∈ [n], we have

Ii[f] =
∑

α:αi=1

f̂(α)2.

Proof. Note that f(x) ̸= f(xei) if
(
f(x)−f(xei)

2

)2
= 1, and otherwise

(
f(x)−f(xei)

2

)2
= 0. Hence

Ii[f] = E
x

[(
f(x)− f(xei)

2

)2
]
.

Consider the function g(x) = f(x)−f(xei)
2 ; we will use Parseval’s equality to evaluate the last expectation,

and for that we compute the Fourier coefficients of g. Expanding the Fourier expansion of f , we have that

g(x) =
1

2

(∑
α

f̂(α)χα(x)−
∑
α

f̂(α)χα(xei)

)
=

1

2

(∑
α

f̂(α)χα(x)(1− χα(ei))

)
=
∑

α:αi=1

f̂(α)χα(x),

and the claim follows from Parseval.

We remark that quantities such as f(x)− f(xei) are often thought of as the derivative of f in direction
i, and so they make sense for general functions (as opposed to only Boolean valued functions). This can be
used to generalize the notion of influence of variables to general functions as norms of this derivative.

In addition, due to the formula above one can ask how much of the influence of f comes from the “low-
degree” part of f and how much of it comes from the “low-degree” part, and with respect to it we define
low-degree influences:

Definition 1.7. Let d ∈ N, f : {−1, 1}n → R and i ∈ [n]. The degree d influence of f is defined as

I⩽d
i [f] =

∑
α∈Fn

2 :|α|⩽d
αi=1

f̂(α)2.

We end this section with a simple property of low-degree influences (which is the primary reason we use
it instead of influences), stating that there can not be too many variables with large low-degree influence.

Lemma 1.8. Let f : {−1, 1}n → R, d ∈ N. Then
n∑

i=1
I⩽d
i [f] ⩽ d∥f∥22. Consequently, if f : {−1, 1}n →

[−1, 1], then for all τ > 0 the number of coordinates i ∈ [n] for which I⩽d
i [f] ⩾ τ , is at most d

τ .

5

Proof. By definition,

n∑
i=1

I⩽d
i [f] =

n∑
i=1

∑
α:|α|⩽d
αi=1

f̂(α)2 =
∑

α:|α|⩽d

n∑
i=1

1αi=1f̂(α)
2 =

∑
α:|α|⩽d

|α| f̂(α)2,

which is at most d
∑

α:|α|⩽d

f̂(α)2 ⩽ d
∑
α
f̂(α)2 ⩽ d∥f∥22.

1.5.2 Majority is Stablest for Bounded Functions

We are now ready to state the Majority is Stablest theorem for bounded functions, and we state it separately
for positive ρ’s and negative ρ’s. For ρ > 0, we have:

Theorem 1.9 (Majority is Stablest). Let ρ ∈ [0, 1] and fix η > 0. Then there are d ∈ N and τ > 0 such that
if f : {−1, 1}n → [−1, 1] has E[f] = 0 and maxi I

⩽d
i [f] ⩽ τ , then

Stabρ(f) ⩽ 1− 2

π
Arccos(ρ) + η.

The stability of majority. We note that the reason for the name of this theorem is that the stability of the
majority function is the right hand side. Indeed, taking h : {−1, 1}n → {−1, 1} to be the majority function,
that is, h(x) = 1 if |{ i |xi = 1}| ⩾ 1 and otherwise h(x) = −1, one has that Stabρ(h) = 1

πArccos(ρ) +
o(1): to see that, note that we may define, for each v ∈ {+1,−1}n the function hv : {−1, 1}n → {−1, 1}
which is 1 if ⟨v, x⟩ > 0 and −1 otherwise. Thus, the majority function is hv for v = 1⃗, and by symmetry it
follows that the stability of all hv’s are the same. Hence,

Stabρ(Majority) = E
v
[Stabρ(hv)] = E

v

[
1− 2 Pr

(x,y) ρ-correlated
[hv(x) ̸= hv(y)]

]
= 1− 2 E

(x,y)

[
E
v

[
1sign(⟨v,x⟩)̸=sign(⟨v,y⟩)

]]
.

Fixing x and y, we have that Ev

[
1sign(⟨v,x⟩)̸=sign(⟨v,y⟩)

]
≈ 1

πθ(x, y)+o(1). This is because v can be thought
of as a random vector on the unit sphere, and it produces different signs with x and y if and only if they lie
in different sides of the hyperplane it is normal to. Since v is a random vector, the hyperplane it is normal to
is also random, hence the probability it passes between x and y is proportional to the angle between them.
Also, we have that θ(x, y) = Arccos

(
⟨x,y⟩

∥x∥2∥y∥2

)
, and ⟨x, y⟩ = (ρ + o(1))n with high probability and so

θ(x, y) ≈ Arccos(ρ), so we get Stabρ(Majority) ≈ 1− 2
πArccos(ρ).

Hence, the above theorem says that the stability of majority is the largest possible (up to o(1)) within
the class of functions with small influences.

For ρ ⩽ 0, we have the following result.

Theorem 1.10 (Majority is Stablest). Let ρ ∈ [−1, 0] and fix η > 0. Then there are d ∈ N and τ > 0 such
that if f : {−1, 1}n → [−1, 1] has E[f] = 0 and maxi I

⩽d
i [f] ⩽ τ , then

Stabρ(f) ⩾
2

π
Arccos(−ρ)− 1− η.

6

2 A Reduction from Unique-games to Max-cut

2.1 The Starting Point of the Reduction

We first recall the Unique-games problem and the Unique-Games Conjecture, which is the problem we
reduce from and the hardness assumption we require to carry out the proof.

Definition 2.1. An instance of Unique-Games is an instance of Label-cover Ψ = (G = (L∪R,E),ΣL,ΣR,Φ =
{Φe}e∈E) wherein |ΣL| = |ΣR| and furthermore each constraint Φe is a permutation. That is, for each
e ∈ E there is a 1-to-1 map ϕe : ΣL → ΣR such that

Φe = {(σ, ϕe(σ)) |σ ∈ ΣL} .

Recall the Unique-games conjecture, which asserts that given a Unique-games instance it is NP-hard to
distinguish between the case it is highly satisfiable and the case only a small fraction of the constraints can
be satisfied.

Conjecture 2.2. For all ε, δ > 0 there is k ∈ N such that gap-UniqueGames[1 − ε, δ] is NP-hard on
instances with alphabet size at most k.

We will further assume that the Unique-games instances we are dealing with are over regular graphs;
this can be added as an assumption if you’d like, however this can also be arranged by standard techniques.

2.2 The Reduction

We are now ready to present the reduction. Let ρ = 1− ε.
Starting with a Unique-games instance Ψ = (G = (L ∪ R,E),ΣL,ΣR,Φ), we wish to construct a

Max-Cut instance with the properties described above. The idea will be to introduce, for each vertex u ∈ L
a separate hybercube {−1, 1}ΣL , and using a cut in that hypercube to encode the label that u is supposed to
get in Ψ. More specifically, we will want to associate with each label σ of u which is supposed to have high
value; this will be the dictatorship cut, i.e. the cut defined by fu(x) = xσ. Once we do that, we will be able
to argue that if Ψ has a good assignment, then the graph we produce G will have a large cut corresponding
to the dictatorship functions in each hypercube.

To ensure soundness, we must take care of two potential issues:

1. Penalizing cuts that are defined by functions that do not “resemble” any dictatorship. We have already
dealt with this issue the last section, wherein we argued that in that case the cut size would be at most
1− 1

πArccos(ρ) + o(1) if f does not have any coordinate with significant low-degree influence.

2. Penalizing violating the constraints of Ψ. Namely, suppose we have two vertices u ∈ L, v ∈ R that
have an edge between them, and they have been assigned by dictatorship functions fu(x) = xσu ,
fv(x) = yσv , but σv, σu do not satisfy the constraint between u and v in Ψ. In that case, we would
want to penalize this cut, as it does not correspond to a good assignment in Ψ. To deal with this
issue, our edges will not really be inside the hypercube of each vertex v, but rather across hypercubes.
For that, it is important to note that there is a natural bijection between the hypercube of v and the
hypercube of u respecting the constraint between them, which is simply x → y where yi = xϕu,v(i).

This almost finishes the informal overview of the reduction, except that if we were to execute the plan
as is, we would get a bipartite graph (the sides being the hypercubes of V and the hypercubes of U), and to
remedy that we only leave one of these sides alive, and take two steps in the graph of Ψ instead of one.

7

We now proceed to the formal construction of the reduction. Given Ψ = (G = (L∪R,E),ΣL,ΣR,Φ),
we construct a weighted max-cut instance G = (V ′, E′, w) as follows.

• The vertices: For each u ∈ L we construct a cube over ΣL, {u} × {−1, 1}Σ, which we refer to as the
long-code of u. A ±1 assignment to these vertices should be thought as a potential encoding of one
of the labels in ΣL for u.

• The edges are weighted according to the following randomized process. Sample v ∈ R and u, u′ ∈ L
two neighbours of v independently. Let x be a uniformly chosen vector from {−1, 1}ΣR , and sample
y ∼ T−ρx. Consider the points

z = ϕv,u(x), z′ = ϕv,u′(y), where ϕv,u(y)σ = yϕ(v,u)(σ) ∀σ ∈ ΣL.

The edge output by the process is (z, z′).

We prove the following lemma, encapsulating the analysis of the reduction.

Lemma 2.3. For all ρ ∈ (0, 1), δ > 0 there is η > 0 such that:

1. Completeness: if Ψ is at least 1−η satisfiable, then there is a cut in G of weight at least 1
2(1+ρ)− δ.

2. Soundness: if Ψ is at most η satisfiable, then G has no cut whose weight exceeds 1− 1
πArccos(ρ)+ δ.

2.3 Analysis of the reduction

We now analyze the construction. First, we show the completeness of the construction, asserting that if Ψ is
highly satisfiable, then there exists a large cut on the graph we have constructed.

2.4 Completeness

Suppose there are labelings AL : L → ΣL and AR : R → ΣR satisfying at least 1− η fraction of the edges.
We assign ±1 values to the cube of u according to the dictatorship assignment of A(u). Namely, we define
the cut in the graph G by

f(u, x) = xAL(u) for (u, x) ∈ V × {−1, 1}ΣL .

We analyze the weight of the cut defined by f . Looking at the process describing the weights of the edges
in G′, Since the graph of Ψ is regular, the marginal distribution of each one of the edges (v, u), (v, u′) is
uniform; therefore the probability both are satisfied by AL and AR is at last 1 − 2η. Sample x, y as in the
process, and look at ϕ(v,u)(x), ϕ(v,u′)(y). Note that yAR(v) ̸= xAR(v) with probability 1

2 + 1
2ρ, and if that

happens, since both edges (v, u) and (v, u′) are satisfied, we get that

f(u, z) = zAL(u) = zϕv,u(AL(u)) = xAR(v) ̸= yAR(v) = z′ϕv,u′ (AL(u′)) = f(u′, z′).

We conclude that the weight of edges crossing the cut is at least 1
2 + 1

2ρ− 2η.

8

2.5 Soundness

In this part, we show that if the UG instance Ψ had no good satisfying assignments then the graph G does
not have a large cut. We prove it in a counter-positive way: assuming we have a large cut in the graph, we
will construct a good assignment for Ψ.

Let f : L×{−1, 1}ΣL → {−1, 1} be a function corresponding to a large cut, that is a cut of size at least
1
πArccos(ρ) + δ. The fractional size of the cut is exactly

Pr
v,u,u′

x,y,z,z′

[
f(u′, z′) ̸= f(u, z)

]
.

Let ν be a vector from {−1, 1}σ such each coordinate is −1 with probability 1
2(1 − ρ). Then the previous

probability is the same as
Pr

v,u,u′
x,ν

[
f(u, ϕ(v,u)x) ̸= f(u′, ν · ϕ(v,u′)x)

]
.

Define for u ∈ U , v ∈ V

gv(x) = E
u:(u,v)∈E

[
f(u, ϕ(v,u)x)

]
, gu(x) = f(u, x).

Intuitively, v asks his neighbours what side it should be on, and takes the average of the suggestions. Then

Pr
u,v,v′
x,ν

[
f(u, ϕ(v,u)x) ̸= f(u′, ν · ϕ(v,u′)x)

]
=

1

2

1− E
v,u,u′
x,ν

[
f(u, ϕ(v,u)x)f(u

′, ν · ϕ(v,u′)x)
]

=
1

2

1− E
v
x,ν

[
E
u

[
f(u, ϕ(v,u)x)

]
E
u′

[
f(u′, ϕ(v,u′)(ν · x))

]]
=

1

2
(1− E

v
x,ν

[gv(x)gv(ν · x)])

=
1

2
(1− E

v
[Stab−ρ[gv]]).

We conclude that since the fractional size of the cut is at least 1− 1
πArccos(ρ) + δ, it holds that

E
v
[Stab−ρ[gv]] <

2

π
Arccos(ρ)− 1− 2δ.

We say v is good if Stab−ρ[gv] ⩽ 1
πArccos(ρ)− δ. Note that by an averaging argument, it follows that

at least δ fraction of the v ∈ L are good, and we denote the set of these by Lgood. We fix d, τ corresponding
to ρ, δ as in Theorem 1.10 and apply it to get that there is i such that I≤d

i [gv] ⩾ δ for each v ∈ Lgood. Define

Listξ(v) =
{
i | I⩽d

i [gv] ⩾ ξ
}
.

Since the sum of the d degree influence is at most d, |List(v)| ⩽ d/ξ; the important point is that this quantity
only depends on ρ, ε (and not on |ΣL|). We finish by showing that if v is good and i ∈ Listτ (v), then a
non-negligible fraction of his neighbours u have ϕ(v,u)(i) ∈ Listτ/2(u). To see that we first prove a simple
connection between the Fourier coefficients of gv’s and gu’s:

9

Claim 2.4. For all α ∈ FΣR
2 we have ĝv(α) = Eu:(u,v)∈E

[
ĝu(ϕ(v,u)α)

]
.

Proof.

ĝv(α) = E
x
[gv(x)χα(x)] = E

x

[
E
u

[
gu(ϕ(u,v)x)

]
χα(x)

]
= E

u

[
E
y

[
gu(y)χα(ϕ

−1
(u,v)y)

]]
= E

u

[
E
y

[
gu(y)χϕ(u,v)α(y)

]]
= E

u

[
ĝu(ϕ(u,v)α)

]
The second equality is by the definition of gv, the third equality is since χα(ϕx) = χϕ−1α(x) for a permu-
tation ϕ.

Lemma 2.5. Suppose v ∈ Lgood, and let i ∈ Listτ (v). Then

Pr
u:(u,v)∈E

[
ϕv,u(i) ∈ Listτ/2(u)

]
⩾

τ

2
.

Proof. By definition and Claim 2.4 we get that

τ ⩽ I⩽d
i [gv] =

∑
α:|α|⩽d,αi=1

ĝv
2(α) =

∑
α:|α|⩽d,αi=1

E
u:(u,v)∈E

[
ĝu(ϕ(v,u)α)

]2
,

and so by Jensen’s inequality we conclude that

τ ⩽
∑

α:|α|⩽d,αi=1

E
u:(u,v)∈E

[
ĝu(ϕ(v,u)α)

2
]
= E

u:(u,v)∈E

 ∑
α:|α|⩽d,αi=1

ĝu(ϕ(v,u)α)
2

= E

u:(u,v)∈E

 ∑
β:|α|⩽d,βϕv,u(i)=1

ĝu(β)
2

= E

u:(u,v)∈E

[
I⩽d
ϕv,u(i)

[gu]
]
.

As I⩽d
ϕv,u(i)

[gu] ⩽ 1 always, it follows that with probability at least τ/2 over the choice of u we have that

I⩽d
ϕv,u(i)

[gu] ⩾ τ/2.

Randomized assignment to the Unique-Games instance

Now we finish the proof. For each v ∈ Lgood assign a label i ∈ Listτ (v) randomly, and for each u ∈ R
assign a label from Listτ/2(u) randomly. We now lower the probability a randomly chosen edge from Ψ is
satisfied.

Choose (u, v) randomly. With probability at least δ, the vertex v is good and we choose some label
i ∈ Listτ (v) for it. We condition on v and i. By Lemma 2.5, it follows that with probability at least
τ/2 over the choice of u we have that the label ϕv,u(i) is in Listτ/2(u), and as that list contains at most

d/(τ/2) elements it follows that we have assigned the label j = ϕv,u(i) to u with probability at least τ/2
d .

10

We conclude that, in expectation over the choice of the assignment, the probability that a random edge is
satisfied is at least

δ · τ
2
· τ/2

d
= δ′(δ, ρ) > 0

hence this is smaller than the soundness of the original Unique-games instance provided that η < δ′. Hence,
we conclude that if the original Unique-games instance was at most η satisfiable for sufficiently small η,
then the graph G′ we produce has no cut of size 1

2

(
1− 1

πArccos(ρ)
)
+ δ. This completes the proof of

Lemma 2.3.

Remark 2.6. We stress here an important point, which is that the performance of the randomized strategy
we found for the Unique-games may depend on various parameters we have used in the reduction (such as
the noise rate ρ). Most importantly though, it does not depend on the alphabet size of the Unique-games
instance, so if we take the soundness of the Unique-games instance to be small enough (which naturally
would mean its alphabet size is also large) we would reach a contradiction. This is very typical to hardness
of approximation result that use list-decoding arguments such as above (namely, an argument that is able
to produce a short list of candidate labels for a vertex and then chooses one randomly), highlighting the
importance of “dimension-free” result in Fourier analysis (such as the Majority is Stablest theorem).

11

MIT OpenCourseWare
https://ocw.mit.edu

18.408 Topics in Theoretical Computer Science: Probabilistically Checkable Proofs
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

	The Long-code Framework, Influence Style
	Motivation
	A Dictatorship Tester for Max-cut
	Influences
	Constructing the Dictatorship Tester
	A Majority is Stablest Result for Bounded Functions
	Fourier Coefficients, Influences and Low-degree Influences
	Majority is Stablest for Bounded Functions

	A Reduction from Unique-games to Max-cut
	The Starting Point of the Reduction
	The Reduction
	Analysis of the reduction
	Completeness
	Soundness

