
18.408 Topics in Theoretical Computer Science Fall 2022
Lecture 21

Dor Minzer

Today we present stronger forms of the PCP theorem that are conjectured to hold but not known. In the
upcoming lectures, we will discuss some of their implications and recent related results.

1 On the Structure of the Constraints in Label Cover

1.1 The PCP + Parallel Repetition + Fourier framework

Recall that in the label-cover problem, an instance Ψ consists of a graph G = (L ∪ R, E), alphabets ΣL

and ΣR and a collection of projection constraints on the edges Φ = {Φe}e∈E . That is, for each e ∈ E the
constraint Φe are defned by a projection map ϕe : ΣL → ΣR as

Φe = {(σ, ϕe(σ)) | σ ∈ ΣL} .

In the frst half of the course, we saw that gap-Label-cover[1, 1 − ε] is NP-hard for some absolute constant
ε > 0 on alphabets |ΣL| = k, |ΣR| = 2 where k is an absolute constant. We then used the parallel repetition
to improve upon the soundness of the PCP, and in the last lecture we saw how one may use Fourier analysis to
get optimal hardness of approximation results for some problems. This framework, that is, the combination
of the PCP Theorem, the Parallel Repetition Theorem and Fourier analysis has been very fruitful in the
decade or so following the proof of the PCP Theorem, but for some reason there were some (in fact, many)
problems for which this approach did not seem to give optimal hardness of approximation results.

To see this, we dissect the hardness result we saw for 3Lin and explain one of the challenges there that we
fortunately managed to overcome. As a result of parallel repetition, the alphabet of the sides L and R grows
exponentially to kℓ and 2ℓ where ℓ is the number of repetition. Thus, the alphabet of the left side is much
larger than that of the right side, hence there are many more points in {−1, 1}ΣL compared to {−1, 1}ΣR .
When proving the hardness result for 3Lin, this point presented some diffculties; more precisely, when we
took x ∈ {−1, 1}ΣR uniformly and then looked at the pull-back point y (x) ∈ {−1, 1}ΣL , the point = ϕ−1

u,v
y is very much not random looking and we cannot directly look at the value of the long-code of u there (as
it is very cheap to corrupt all of these points). Fortunately, in the case of 3Lin we were able to overcome this
issue by using local correction.

There are cases, however, where we cannot use local correction. Suppose that we were trying to prove
a hardness result for 2Lin instead of 3Lin (which is the same problem except that in each equation we have
two variables), or the very related problem of Max-Cut. In that case we cannot afford to perform local
correction: if we wish to perform local correction, we are already investing 2 in that, so we cannot query
anything else to compare this value against. This barrier, and other manifestations of it, present themselves
in numerous problems wherein one has a candidate construction for a dictatorship test but does not know
how to use it for a NP-hardness reduction.

1

1.2 Circumventing the Local Correction Barrier

Thus, to make progress on problems in which this barrier exists, researchers had to come up with rather ad-
hoc solutions. This includes inspecting other parameters of PCP that can be used, on top of the parameters
we’ve discussed in this course, for the purpose of a specifc problem. This also includes more ingenious
ways of combining the above ingredients to circumvent this barrier (smooth PCPs, randomized noise rates
and so on), but even these ideas only led to progress on a limited class of problems. Some notable problems
for which these techniques did not work very well are the Vertex Cover problem, the Max-Cut problem and
the 2SAT problem.

This situation naturally sparks the question of whether there are yet other, stronger forms of the PCP
theorem that would allow one to circumvent these issues altogether. And while we do not know the answer
to that, in 2002 a conjecture regarding the existence of such PCP theorem has been made, which we discuss
in the next section.

2 The d-to-1 and the Unique-Games Conjectures

2.1 The Statements of the Conjectures

An instance of the d-to-1 Games problem is special type of instance of the Label-cover problem, wherein
each constraint is a d-to-1 constraint. Formally:

Defnition 2.1. An instance of d-to-1-Games is Ψ = (G = (L ∪ R, E), ΣL, ΣR, Φ = {Φe}e∈E), wherein G
is a bi-regular bipartite graph, ΣL and ΣR are fnite alphabet with |ΣL| = d |ΣR|, and for each e ∈ E, the
constraint Φe is a d-to-1 constraint. By that, we mean that there is a d-to-1 map ϕe : ΣL → ΣR such that

Φe = {(σ, ϕe(σ)) | σ ∈ Σ} .

In the context of d-to-1-Games, d should be thought of as a small constant, say d = 2. The smaller the
d, the better. For the smallest possible d, that is, for d = 1, d-to-1-Games take the more well-known name
Unique-Games.

Defnition 2.2. The Unique-Games problem is the d-to-1-Games problem for d = 1.

The d-to-1-Games Conjecture and the Unique-Games Conjecture assert, morally speaking, that the state-
ment of the PCP theorem holds for d-to-1 Games and Unique-Games respectively. More precisely, the d-to-1
Games Conjecture states that

Conjecture 2.3. For all d ⩾ 2 and for all ε > 0, there is k ∈ N such that gap-d-to-1-Games[1, ε] is NP-hard
on instances with alphabet sizes at most k.

For d = 1, the situation is a bit more delicate. Given an instance of Unique-Games which is promised
to be fully satisfable, it is possible to effciently fnd a satisfying assignment. Indeed, one takes some vertex
u ∈ L, guess their label σu and then use the 1-to-1 constraints to propagate this and get the labels for all
other vertices in the graph. In words, fully satisfable instances of Unique-Games are easy to solve. The
statement of the Unique-Games Conjecture states that, except for that, Unique-Games are just as hard as
Label-cover instances:

Conjecture 2.4. For all ε, δ > 0, there is k ∈ N such that gap-Unique-Games[1 − ε, δ] is NP-hard on
instances with alphabet sizes at most k.

2

�� ��

2.2 Proving Via Parallel Repetition?

d-to-1 Games. One may attempt to prove Conjecture 2.3 for some d ∈ N via a strategy similar to the one
we’ve seen in this course. Namely, start off with a basic result saying that gap-d-to-1-Games[1, 1 − ε] is
NP-hard for some ε > 0 and d ∈ N, and then perform parallel repetition to amplify the gap. And indeed,
while the frst step works (that is, one can get a basic result of this form), the parallel repetition step does
not. Indeed, applying t-fold parallel repetition on a d-to-1-Games instance leads to dt-to-1-Games instance,
so the parallel repetition operation does not preserve d-to-1-ness.

Unique-Games. Ok, but we can still try to prove Conjecture 2.4 for some d ∈ N via this strategy, since
parallel repetition does preserve uniqueness. That is, we want to start off with a basic result stating that
gap-Unique-Games[1 − ε, 1− ε ′] is NP-hard for some ε < ε ′, and then perform parallel repetition to amplify
the gap. If we had an “ideal” parallel repetition theorem which states that val(Ψ⊗t) = val(Ψ)t and ε was
arbitrarily smaller than ε ′ (say, ε ′ = ε0.99), then this approach could be in fact made to work. Alas, such
“ideal” parallel repetition theorem is not known — in fact it is false. Moreover, the basic PCP result for
Unique-Games one wants to amplify, is also not known.

In other words, it is unclear how to go about proving Conjectures 2.3 and 2.4. And indeed, despite being
proposed in 2002 until recently there hasn’t been much progress towards a proof of these results.

2.3 Implications of Conjectures 2.3 and 2.4

In contrast to the lack of progress towards a proof of Conjectures 2.3 and 2.4, there has been much progress
in understanding their power and their implications. In the same paper that suggested these conjectures, it
was shown that they imply improved inapproximability results for the vertex cover and 2SAT problems that
bypassed the best known hardness result that can be achieved by existing PCP techniques.

It took a while longer, but it was later realized that, if true, Conjecture 2.4 in fact implies tight inap-
proximability results for all constraint satisfaction problems. This result, known as Raghavendra’s theorem,
is a beautiful culmination of many ideas that were developed in UGC based reduction, among which are
connections to Fourier analysis, Gaussian geometry and Semi-defnite Programming relaxation.

In this course, we will not prove Raghavendra’s theorem or even state it, and instead focus on predeces-
sors of it which got the UGC train started. Namely, we are going to discuss the Max-cut and Vertex-cover
problems.

3 The Max-cut Problem

Recall that given a graph G = (V,E), a cut in G is a set of vertices S ⊆ V . Denoting by E(S, S̄) the set of
edges that go from S to its complement, the size of the cut defned by S is E(S, S̄) , and the fractional size

|E(S,S̄)|of the cut defned by S is .|E|
In an undergraduate algorithm course, one often sees that the Min-cut problem, which asks, given a

graph G, to fnd the smallest cut in it. This is a well known problem in the class P, and a typical textbook
way of showing that is by using LP-duality to establish the Min-cut Max-fow algorithm, and then solving
the Max-fow problem by one of the many existing polynomial time algorithms for it. What about the
maximization version of the cut problem, though?

3

In the Max-cut problem, the input is again a graph G = (V, E), and the task is to fnd a cut of maximum
size. This problem is another well-known NP-hard problem, and we will care about the approximation
version of it. Here, for α ∈ (0, 1), an α-approximation algorithm for Max-cut is an algorithm that on a
graph G outputs a cut whose size is as least αMC(G), where MC(G) denotes the size of the maximum cut
in G. How well can one approximate Max-cut?

Theorem 3.1. There is a polynomial time 1
2 -approximation for Max-cut.

Proof. Given a graph G = (V, E), we choose a cut S ⊆ V randomly, by including each v ∈ V in S with
probability 1/2. Note that for any edge e = (u, v) ∈ E, the probability it belong to the cut S is 1/2, so
denoting by Ze the event that e crosses the cut, we get that the expected size of the cut of S is " #X X X 1 |E|

E Ze = E [Ze] = = .
2 2

e∈E e∈E e∈E

Hence, in expectation the cut S has size |E| /2, and by standard techniques again one can de-randomize this
algorithm.

In light of Theorem 3.1 and previous lectures, one may expect that the next result would state that
achieving a better approximation ratio than 1/2 is NP-hard (or maybe UGC-hard since we talked about
UGC before). However, here the plot thickens:

Theorem 3.2. For αGW ≈ 0.878, there is a polynomial time αGW-approximation for Max-cut.

The rest of this lecture is devoted to the proof of Theorem 3.2. Our approach will be to frst phrase the
Max-cut problem as an integer program, which by itself is not very useful since integer programming is
NP-hard. We will then consider a convex relaxation of this program which is known as the Semi-defnite
Programming relaxation. The beneft of this is that, unlike integer programs, such convex optimization
problems can be solved by polynomial time algorithm. The down-side is, though, that we will get a solution
to the relaxed version of the problem, which does not give us a cut in the graph. The fnal step in our
approach will be a rounding phase, wherein we will turn the solution of the relaxed program into a Max-cut
by a rounding algorithm.

3.1 The Integer Program Formulation

First, we phrase the Max-cut problem as an integer program. For each vertex v ∈ V we create a variable xv

that is supposed to be assigned a value from {−1, 1}. The idea is that xv = 1 will represent that v is on the
left side, and xv = −1 will represent that v is on the right side. Thus, for (u, v) ∈ E, xuxv = −1 if and
only if (u, v) crosses the cut, and otherwise xuxv = 1. Therefore, the following program is a formulation
of the Max-cut problem over G: P

max 1
2 1 − xuxv
(u,v)∈E

subject to xv ∈ {−1, 1} ∀v ∈ V.

However, integer programming is NP-hard in general, so this formulation does not get us anywhere. That
being said, this formulation does motivate us to look at a higher dimensional, Semi-defnite Program (SDP
in short) formulation of the problem.

4

3.2 The Goemans-Williamson Algorithm for Max-cut

In this section, we show the algorithm that proves Theorem 3.2, which goes by the name the Goemans-
Williamson algorithm.

3.2.1 The Semi-defnite Programming Relaxation

In the SDP formulation of the problem, we allow each variable xu to take a value in the unit ball in Rr

(where r may be polynomially large in n = |V |). P
max 1 1 − ⟨xu, xv⟩2

(u,v)∈E

subject to ∥xv∥2 = 1 ∀v ∈ V.

This optimization problem now can be solved, at least approximately. We will not discuss convex opti-
mization in this course further, but we remark that the point is that this program is convex: this is really an
optimization problem over the cone of PSD matrices, where the matrix in question is |V | × |V | matrix of
inner products J = (⟨xu, xv⟩)u,v∈V .

Let {xv}v∈V be a vector solution to the above program. Amazingly, we can turn this vector-valued
solution into pretty good integral-valued solution, that is, a cut in the graph G!

3.3 The Rounding Procedure

In this section, we show how to turn the vector-valued solution to the above SDP program relaxation into a
decent cut in G. Suppose the optimum size of the cut in our graph G is ρ |E|, where ρ ∈ [1/2, 1]. First, it is
clear that the optimum of the SDP program is at least ρ |E| (why?), so in particular X1

1 − ⟨xu, xv⟩ ⩾ ρ |E| .
2
(u,v)∈E

We now generate a randomized cut from the vector solution. Take a random vector h from the unit ball in
Rm, and defne

L = {v | ⟨xv, h⟩ ⩽ 0} ; R = {v | ⟨xv, h⟩ > 0} .
Our goal is to analyze the expected number of edges that crosses the cur (L, R). Fix an edge (u, v) ∈ E;
then the probability that (u, v) is cut is θu,v/π, where θu,v is the angle between u and v. Thus, by linearity
of expectation the expected size of the cut is X X Xθu,v Arccos(⟨xu, xv⟩)

= ⩾ αGW (1 − ⟨xu, xv⟩) ⩾ αGW ρ |E| .
π π

(u,v)∈E (u,v)∈E (u,v)∈E

Arccos(z)/πHere, αGW = minz∈[−1,1] . Given this expectation guarantee, one can again use standard tools to (1−z)/2
design a proper approximation algorithm that achieves this approximation ratio.

3.4 The Goemans-Willaimson algorithm for almost bipartite graphs

With a more careful analysis, one can show that if the original size of the cut was very large, say ρ = 1 − ε
for small ε, then the above analysis could be signifcantly improve.

Theorem 3.3. Suppose G = (V, E) has a cut of size (1 − ε) |E|. Then the expected size of the cut in the � √ �
Goemans-Williamson algorithm is at least 1 − 2 (1 + o(1)) ε |E|.π

5

3.5 Optimal Algorithms for Max-cut

The algorithmic guarantees given by Theorems 3.2 and 3.3 seem rather bizarre. A-priori, there is no reason
to believe that the best approximation ratio achievable for Max-cut is provided by this ad-hoc-ish approach
of solving a convex programming relaxation and then rounding it to an integral solution.

It turns out, though, that the algorithm we presented today is the best polynomial time approximation
algorithm for Max-cut. At least assuming the Unique-Games Conjecture. In the next lecture, we will present
a reduction that proves this last assertion.

6

MIT OpenCourseWare
https://ocw.mit.edu

18.408 Topics in Theoretical Computer Science: Probabilistically Checkable Proofs
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

	On the Structure of the Constraints in Label Cover
	The PCP + Parallel Repetition + Fourier framework
	Circumventing the Local Correction Barrier

	The d-to-1 and the Unique-Games Conjectures
	The Statements of the Conjectures
	Proving Via Parallel Repetition?
	Implications of Conjectures 2.3 and 2.4

	The Max-cut Problem
	The Integer Program Formulation
	The Goemans-Williamson Algorithm for Max-cut
	The Semi-definite Programming Relaxation

	The Rounding Procedure
	The Goemans-Willaimson algorithm for almost bipartite graphs
	Optimal Algorithms for Max-cut

