
18.408 Topics in Theoretical Computer Science Fall 2022 
Lectures 17-20 

Dor Minzer 

Today we present the long-code framework in hardness of approximation, and use it to prove several 
tight inapproximability results. En route, we give a brief introduction to discrete Fourier analysis over the 
Boolean hypercube. 

1 Tight Inapproximability Results: Introduction 

Our primary objective in the upcoming lectures will be to prove tight inapproximability results for the 3Lin 
and 3SAT problems that we already saw in lecture 1. Below, we give a brief introduction to these problems. 

1.1 The Complexity of Linear Equations over Finite Fields 

Linear equations over felds are probably one of the most basic object in mathematics. A frst course in linear 
algebra typically begins with a few lectures discussion how to solve a system of linear equations over a feld, 
conditions for a solution to exist and so on. Typically, the matrix ranking algorithm (Gaussian elimination) 
is presented, and throughout the course many more applications of this method are presented. Thus, it makes 
sense to consider the complexity of solving linear systems of equations over felds from a TCS view. Since 
objects need to have a fnite description in computer-science, it makes sense that we will discuss fnite felds; 
otherwise, we may run into issues such as how do we even represent real-numbers, which we wish to avoid. 

Given a prime power q, consider the feld Fq and defne the 3Linq problem as follows. An instance of the 
problem (X, E) consists of a set of variables X = {x1, . . . , xn} that are supposed to be assigned with values 
from Fq, as well as a set E of equations. Each equation e ∈ E is of the form a1,exi + a2,exj + a3,exk = be, 
where a1,e, a2,e, a3,e, be are all feld elements. Given an instance of 3Linq, the goal is to fnd an assignment 
A : X → Fq that satisfes as many of the equations as possible. 

Given a system (X, E) promised to be fully satisfable, we can use our favorite Gaussian elimination 
algorithm to effciently fnd a satisfying assignment A : X → Fq. Writing this in gap problems notations, 
we conclude that gap-3Linq[1, 1] is in the class P. What happens though, if instead of promising that the 
system (X, E) is satisfable, we only promise that it is(1 − ε)-satisfable, where ε > 0 is very small? Can 
we effciently fnd a decent assignment for the instance in this case as well? 

A quick inspection of the Gaussian elimination algorithm shows that it fails miserably, so we are back to 
the drawing board algorithmically. A naive idea one may try is to simply choose an assignment A : X → Fq 

randomly. That is, for each variable xi in the system, choose the value of A(xi) from Fq uniformly; how well 
does this assignment perform? Fixing an equation e ∈ E in the system, say a1,exi + a2,exj + a3,exk = be, 
we note that if at least one of the coeffcients on the left hand side are non-zero, then the distribution of 
a1,eA(xi) + a2,eA(xj ) + a3,eA(xk) is uniform over Fq. Hence, that element will be equal to be with 
probability 1/q. Therefore, A satisfes the equation e with probability 1/q, so by linearity of expectation the 
expected number of equations that A satisfes is at least 1 |E|. q 
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Given such “expectation guarantee”, there are a few standard techniques often allow one to deduce a 
proper (often times, even deterministic) algorithm that achieves this expected value; you will see some of 
them in the problem set. For the 3Linq problem as above, it is indeed not hard to convert this algorithm 
that works “in expectation” to an algorithm that fnds an assignment satisfying at least 1/q fraction of 
the equations; in any case, it follows that there is an assignment that satisfes at least 1/q fraction of the 
equations, hence gap-3Linq[1 − ε, 1/q] is also in P (regardless of what ε is). 

Surely though, this naive algorithm can be improved? I doesn’t even look at the system (X, E)! 

Theorem 1.1. For all prime powers q, and for all ε, δ > 0, the problem gap-3Linq[1−ε, 1/q+δ] is NP-hard. 

In other words, the trivial algorithms above (the Gaussian elimination and the choose-a-random-assignment 
algorithms) are the best one can do for 3Linq. We will prove Theorem 1.1 in the upcoming lectures, and for 
simplicity we will focus on the case that q = 2. 

1.2 The Complexity of 3SAT 

The 3SAT problem is the poster NP-complete problem. Recall that a 3CNF formula consists of a set of 
variables X = {x1, . . . , xn} and a formula over X , ϕ(x1, . . . , xn) = C1 ∧ C2 ∧ . . . ∧ Cm wherein each 
clause Cj is of the form α ∨ β ∨ γ where each one of α, β, γ is a literal (a variable from X or its negation). 

Viewing 3SAT as an optimization problem, given a 3CNF formula ϕ(x1, . . . , xn), the goal is to fnd 
an assignment A : X → {0, 1} that satisfes as many of the clauses in ϕ as possible. In this terminology, 
the Cook-Levin Theorem asserts that gap-3SAT[1, 1] is NP-hard. Using the basic PCP theorem and some 
elementary ideas, one can show that there is ε > 0 such that gap-3SAT[1, 1 − ε] is NP-hard, meaning that 
given a satisfable 3CNF formula ϕ, it is NP-hard to fnd an assignment that satisfes at least 1 − ε of the 
clauses. In particular, it is NP-hard to approximate 3SAT within factor 1 − ε for some explicit (but small) 
ε > 0. How well can one approximate 3SAT, though? 

Well, we can try a random assignment idea again. Sample A : X → {0, 1} by taking A(xi) to be 
a random bit chosen independently for each xi ∈ X . Observe that each individual clause of the form 
C = (α ∨β ∨ γ) is satisfed with probability at least 1 −2−3 = 7/8, so in expectation A satisfes at least 7/8 
of the clauses of ϕ. Using standard techniques, one can convert this guarantee to a proper, effcient algorithm 
that given a formula ϕ fnds an assignment satisfying at least 7/8 of its clauses. Thus, gap-3SAT[1, 7/8] is 
in P. But surely, one can do better? The algorithm above doesn’t even look at ϕ! 

Theorem 1.2. For all ε > 0, the problem gap-3Sat[1, 7/8 + ε] is NP-hard. 

In other words, the choose-a-random-assignment algorithm is, once again, achieves the best possible 
approximation ratio by an effcient algorithm (assuming P̸=NP). The techniques we show herein will can 
also be used to establish Theorem 1.2. We may prove a slightly weaker result to avoid some complications, 
though. 

1.3 The Long-code Paradigm 

In this section, we begin the discussion about the Long-code paradigm, which is a general approach for 
proving hardness of approximation results using the PCP theorem. To motivate the discussion, we will 
consider a somewhat larger class of problems that include both 3SAT and 3Lin, and discuss the steps that 
one often has to take in order to prove hardness results for a problem in this class. 
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1.3.1 Predicates and Testers that Use the Predicate 

The 3SAT and the 3Lin problems are two examples of problems known as constraint satisfaction problems. 
There are several (non-equivalent) defnitions of constraint satisfaction problem, and we present one which 
will help us for the purpose of this lecture. A (Boolean) constraint satisfaction problem is defned by a 
predicate P : {0, 1}r → {0, 1}, and an instance of it (X, E) consists of a set of variables X = {x1, . . . , xn}
as well as a set of constraints E. Each constraint has the form P (α1, . . . , αr) = 1, where α1, . . . , αr are 
literals. The goal is to fnd an assignment A : X → {0, 1} that satisfes as many of the constraints of (X, E) 
as possible. 

In this terminology, the 3Lin problem is the constraint satisfaction problem corresponding to the predi-
cate P wherein r = 3 and P (x, y, z) = 1 if x + y + z = 0 (mod 2). The 3SAT problem is the constraint 
satisfaction problem with r = 3 corresponding to the predicate P (x, y, z) = (x ∨ y ∨ z). 

To prove a hardness of approximation result for some predicate P , one needs to fnd a locally testable 
error correcting code, whose local tester performs checks that correspond to the predicate P . In other 
words, one needs to fnd a code C ⊆ {0, 1}N and a local tester T that on input w = (w1, . . . , wN ), samples 
r locations i1, . . . , ir ∈ [N ] (in a randomized way) from w and then checks that P ′ (wi1 , . . . , wir ) = 1. 

′Here P is the same as the predicate P , except that we allow to apply negations on some coordinates; for 
′example, P may be defned as P ′ (x1, . . . , xr) = P (1 − x1, x2, . . . , xr). 

The tester T should accept codewords from C with high probability, say c (which is typically 1 or close 
to it). For weak hardness results, it suffces to show that if the tester T accepts w with probability close to 
c, then w is close to a codeword. For strong hardness results, one needs to venture into the list decoding 
regime, and show that if the tester T accepts w with probability at least s (which may be much smaller than 
c), then w is “correlated” with some codeword from C.1 Indeed, the quality of the eventual hardness result 
we will get will be s/c. Thus, the ratio between s and c that we are able to achieve determines the quality of 
the hardness result we prove, so we will try to get s and c to be far from each other.. 

Remark 1.3. We stress that, as far as we know, fnding such a code and a test is not suffcient for proving 
a hardness of approximation result. Indeed, in the coming lectures we will develop such code and test that 
have parameters that correspond to the requirement needed from Theorem 1.1, but we will need to work 
harder to turn this into a proof of Theorem 1.1. There is a well known conjecture in TCS, called the Unique-
Games Conjecture, which if true would say that any code and test and above would yield a hardness of 
approximation result with matching parameters automatically, and we may discuss it later in the course. 

1.3.2 One Code for all Testers 

So, does it mean that for every single new constraint satisfaction problem we face, we need to come up 
with a new code and a new local tester T ? For the tester T this is inevitable, since the tester itself has to 
only performs checks that correspond to the predicate we want to prove hardness for. For the code, though, 
there is no a-priori reason there would not be one, universal, nice enough could that would be rich enough 
to facilitate local testers of many different forms. 

And indeeed, ideally, we would like to have a single code C that will work for all hardness results, so 
that at each time we only have to be concerned with designing the tester T . Intuitively, the best chance for us 
to achieve such property is if the code C is maximally “redundant”. Namely, the information in a codeword 
is so well spread so well that we can access or decode any part of it by applying any predicate on several 

1The word correlated here appears with quotation marks since we will not actually be able to achieve correlation with a code-
word, but some other notion of list-decodability that will be suffcient for our purpose. 
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well-chosen coordinates of it. Indeed, this is because we want to facilitate many completely different local 
tests (one for each predicate P ), and this raises the question of what is the Boolean code C that has the most 
redundancies? A good candidate for such a code would be a code C of the worst possible rate (ignoring 
trivialities such as repetition codes). This code has a name: it is called the Long-code (the word “long” 
precisely describes the fact that the encoding of an element there is very, very long), and we formally defne 
it below: 

Defnition 1.4 (The Long-code). Let n ∈ N and let i ∈ {1, . . . , n}. The long code encoding of i is the truth 
table of the function fi : {0, 1}n → {0, 1} defned by fi(x) = xi.� 

The long-code is the set LC = (fi(x))x∈{0,1}n i ∈ [n] . 

Thus, for each coordinate i ∈ [n], we encode i by the truth table of the dictatorship function fi(x) = xi 
over {0, 1}n, which is a string of length 2n bits. In other words, we encode a string of log n bit (the index i) 
by a string of length 2n . Thus, the encoding of an index i is doubly exponential in the length of i, so indeed 
this code has a very bad rate hence many “redundancies”. This used to be not-so-good for us early on in the 
course, but in the upcoming lectures it will be crucial for proving Theorem 1.1. 

In the literature, local testers for the long code are often referred to as dictatorship tests. The reason 
for that comes from social choice theory. We can think of a Boolean function f : {0, 1}n → {0, 1} as a 
voting scheme wherein there are n-voters. Voter i casts their vote xi between two candidates, 0 and 1, 
and the function f is then applied to aggregate all of these votes: the winner of the elections is candidate 
f(x1, . . . , xn). With this in mind, the function fi in the defnition of the long-code really merits the name 
“dictatorship”; the outcome of the scheme would always be the opinion of the ith voter, regardless of the 
opinions of the rest. 

2 Designing a Dictatorship Test for 3Lin 

In this section, we develop a dictatorship test for the 3Lin problem. 
So, our goal is to query a given function f : Fn → F2 in 3 locations, check some linear equation on2 

them, and say whether f is a long-code codeword or not based on it. Where do we even start? Well, this 
is not clear, but we have already seen something similar to that earlier in the course. More specifcally, we 
saw a local tester for the Hadamard code over F2. Recall that in the Hadamard code, for each α ∈ Fn we2 
have a codeword, which is the truth table of hα : Fn → F2 defned by hα(x) = ⟨α, x⟩. We saw a local tester 2 
for the Hadamard code, which given oracle access to a supposed codeword f : Fn → F2, samples x, y ∈ Fn 

2 2 
uniformly, and checks that f(x) + f(y) = f(x + y). We saw that if f is a Hadamard codeword, then the 
test passes with probability 1, and if the test passes with probability ⩾ 1 − ε for ε < 1/8, then f is 2ε-close 
to a Hadamard codeword. 

Note that the long-code is a sub-code of the Hadamard code; indeed, fi = hα for α = ei. Thus, we can 
use the above test to ensure that codewords will be accepted, and narrow down the class of functions that 
perform well in the test to functions close to hα for some α ∈ Fn 

2 . This is a good start, but for the test to be 
useful for us for the purpose of Theorem 1.1, we need to improve this tester in two ways: 

1. We would like to be able to argue about functions that pass the test with probability s = 1/2 + δ (as 
opposed to probability close to 1) because we want to get a strong hardness result for 3Lin. 

2. We would like to narrow down further the functions that perform well in the test, and (roughly) only 
allow such functions to be hα for α of small Hamming weight. Ideally, we would have liked to only 
allow α to have Hamming weight 1 (and thus be a long-code codeword), but we will not be able to do 

4 



so. Still, if we manage to guarantee α to have constantly small Hamming weight, this will correspond 
to at most constantly many long-code codewords. 

2.1 Analyzing the Linearity Test in the List Decoding Regime 

We start off by resolving the frst issue, and present an analysis of the linearity tester in the small soundness 
regime. That is, we have a function f : {0, 1}n → {0, 1} such that 

1 
Pr [f(x) + f(y) = f(x + y)] = + δ, (1) 

x,y∈Fn 
2 2 

and we would like to argue that f must have some Hadamard-ish codeword behaviour. As we saw earlier in 
the course, if δ is close to 1/2, then f must be close to some Hadamard codeword hα. In the current context, 
when δ is thought of as positive (but small) constant, it is natural to expect that f will be correlated with 
Hadamard codeword hα. This turns out to be true, and for that we will need some basic tools from discrete 

2Fourier analysis. 

2 

Fix f as above, and let α ∈ Fn 
2 . We want to show that f and hv are correlated, namely that for some α 

the number 
cα = Pr [f(x) = hα(x)] − Pr [f(x) ̸= hα(x)] 

x∈Fn x∈Fn 
2 

2 

is bounded away from 0. We re-write cα in a more suggestive form, and for that purpose we frst observe 
that (−1)f(x)+hα(x) = 1 if f(x) = hα(x) and −1 otherwise. Therefore, h i h i 

cα = E (−1)f (x)+hα(x) = E (−1)f(x)(−1)hα(x) . 
x∈Fn x∈Fn 

2 

The last expectation looks like the L2 inner product between two functions, which are (−1)f(x) and (−1)hα(x). 
This suggests that it may be a good idea to defne a certain vector space with the L2 inner product on it, and 
use some tools from linear algebra to study it. This is indeed the case, but to make our lives (and notations) 
easier, it is convenient to switch to ({1, −1}, ·) notations as opposed to ({0, 1}, + (mod 2)) notations. 

2.1.1 The Notational Switch: Going from {0, 1} to {1, −1} 

Instead of working with bits b ∈ {0, 1}, it will be more convenient for us to work with signs, (−1)b ∈ 
{1, −1} (thus, 1 represents 0 and −1 represents 1). Thus, instead of thinking about the function f : {0, 1}n → 
{0, 1}, we can think of F : {−1, 1}n → {−1, 1} defned by F (z) = (−1)f(x) where zi = (−1)xi for each 
i. Also, instead of thinking about the function hα, we will think of the function χα : {−1, 1}n → {−1, 1}, 
defned as χα(z) = (−1)hv (x) where zi = (−1)xi . Note that χα takes the form: P 

xi Y Y 
χα(z) = (−1)⟨α,x⟩ i:αi=1= (−1) = (−1)xi = zi, 

i:αi=1 i:αi=1 

namely addition modulo 2 translated into multiplying signs. The function χα often goes by the name char-
acter (it has a special meaning when viewed as a homomorphism from F2 to reals with absolute value 1), and 
we will adopt this terminology. We note that with these notations, the parameter cα we considered earlier 
takes a nice form: cα = Ez∈{−1,1}n [F (z)χα(z)]. 

2We remark that discrete Fourier analysis is a rich enough topic to merit a separate course, so our presentation here will naturally 
be very partial. 
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2.1.2 Discrete Fourier Analysis 

Now that we presented the quantity we wish to study as an inner product, we formally defne the inner 
product space that we work with and state some basic properties of it. 

Defnition 2.1. We defne the inner product between real-valued functions over {−1, 1}n as follows. For 
functions F, G : {−1, 1}n → R, defne 

⟨F, G⟩ = E [F (z)G(z)]. 
z∈{−1,1}n 

It is easy to check that this defnition satisfes all of the properties of inner product, so now we can 
think of the space of real-valued functions over {−1, 1}n as a vector space equipped with an inner product 
structure; we shall denote this space by L2({−1, 1}n). We note that the dimension of L2({−1, 1}n) is 2n . 

So why do inner products arise from considering functions f that satisfy (1)? Is there anything special 
about the functions χv with respect to this inner product that would explain the conclusion we are expecting 
to get? First, note that for all α ∈ Fn 

2 , � � 
∥χα∥2 = ⟨χα, χα⟩ = E [χα(z)χα(z)] = E χα(z)

2 = E [1] = 1,2 
z∈{−1,1}n z∈{−1,1}n z∈{−1,1}n 

so each χα is a unit vector in this vector space. Second, note that if α = 0⃗, χα is the constant 1 function, 
and if α ̸= ⃗0, then   Y Y 

E [χα(z)] = E  zi = E [zi] = 0, 
z z z 

i:αi ̸=0 i:αi ̸=0 

′has (and hence is orthogonal to Third, for F have n∈χ 0 χ α, α so average we.α ⃗ 20 

2 

Y Y Y 
χα(z)χα ′ (z) = zi · zi = zi = χα⊕α ′ (z), 

i:αi=1 i:α ′ i=1 i such that 
αi=1,α ′ =0 ori 
αi=0,α ′ =1i 

so if α ̸= α ′ then ⟨χα, χα ′ ⟩ = Ez∈{−1,1}n [χα(z)χα ′ (z)] = Ez∈{−1,1}n [χα⊕α ′ (z)] = 0. In other words, we 
have just shown the following lemma: 

Lemma 2.2. The set {χα}α∈Fn is an orthonormal set in L2({−1, 1}n). 

X 

2 

set { }χ Fnα ∈α 2 

{−1, 1}n, say G : {−1, 1}n → R, we can represent G as a linear combination of χα: 

bG(z) = G(α)χα(z). 
α∈Fn 

With Lemma 2.2 and our earlier observation that the dimension of L2({−1, 1}n) is 2n , we get that the 
is an orthonormal basis for L2({−1, 1}n). Therefore, given any real-valued function over 

The coeffcients Gb(α) are called the Fourier coeffcients of G. As χα is an orthonormal basis, we can say a 
few things about the coeffcients of G: 
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Parseval’s equality: 1. have basic result known Parseval’s equality, which asserts that we a as X X X X� � b b b b b′ ′2 2E ⟨ ⟩ ⟨ ⟩G( ) G,G G(α)χ G(α )χ G(α)G(α ) χ , χ G(α)z = = = =′ ′α α, .α α 
′ ′F FF Fn nn n∈ ∈α ∈ ∈ αα α,α 2 

* + 

z 
222 

In particular, if G has 2-norm equal to 1 (as in our case of interest, wherein G will be ±1 valued), 
then the sum of squares of Fourier coeffcients of G is also 1. 

2. A formula for the Fourier coeffcients: for any α ∈ Fn 
2 we have that * + 

⟨G, χα⟩ = Gb(α ′ )χα ′ , χα = Gb(α ′ ) ⟨χα ′ , χα⟩ = Gb(α). 
α ′ ∈Fn α ′ ∈Fn 

X X 

22 

2 

Hence, a Fourier coeffcient Gb(α) is the inner product of G with the corresponding basis function χα. 

In particular, from the last remark it follows that the parameters cα that we defned earlier are none other than 
the Fourier coeffcients of the function F ! It therefore makes sense that the above inner product perspective 
will be useful for us to understand functions satisfying (1) (provided that, indeed, our guess that it implies 
correlation with a Hadamard codeword is indeed correct). But how do we do that? 

Well, the frst step is to phrase (1) in terms of the function instead of , and quick inspection shows F f a 

2 

that it is equivalent to 

Pr [F (x)F (y) = F (xy)] ⩾ 
1
+ δ, (2) 

x,y∈{−1,1} 2 

where (xy)i = xiyi. Still, it is not clear how to apply our inner-product Fourier machinery, and we need to 
arithmetize this probability statement into an expectation statement. Note that given (2), we get that 

Pr [F (x)F (y) ̸= F (xy)] ⩽ 
1 − δ, 

x,y∈{−1,1} 2 

so 

⩾E − ̸[F ( )F ( )F ( )] Pr [F ( )F ( ) F ( )] Pr [F ( )F ( ) F ( )] 2δ. x y xy = x y = xy x y = xy 

X X Xb b bF ( ) F (α)χ ( ) F ( ) F (β)χ ( ) F ( ) F (γ)χ ( )x = x y = y xy = xyα γ, β , , 
F F Fn n n∈ ∈ ∈α β γ2 

x,y∈{−1,1}n x,y∈{−1,1} x,y∈{−1,1} 

We can now try to plug in our Fourier expansion for F and hope for the best. Indeed, we write 

2 

and note that χγ (xy) = χγ (x)χγ (y). We get that  X 
E [F (x)F (y)F (xy)] = E  Fb(α)Fb(β)Fb(γ)χα(x)χβ(y)χγ (x)χγ (y) 

α,β,γ∈Fnx,y∈{−1,1}n x,y∈{−1,1}n   

2 

X 
= E  Fb(α)Fb(β)Fb(γ)χα⊕γ (x)χβ⊕γ (y) 

α,β,w∈Fnx,y∈{−1,1}n X 

2 

= Fb(α)Fb(β)Fb(γ) E [χα⊕γ (x)χβ⊕γ (y)] 

α,β,γ∈Fn 

x,y∈{−1,1}n 

2α,β,γ∈Fn X 
Fb(α)Fb(β)Fb(w) E [χα⊕γ (x)] E [χβ⊕γ (y)].= 

x∈{−1,1}n y∈{−1,1}n 
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Note that unless α = β = γ the corresponding summand is 0, hence we get that 

2δ ⩽ E [F (x)F (y)F (xy)] = Fb(α)3 . 
α∈Fn 

X 

2 
x,y∈{−1,1}n 

By Parseval’s equality, the squares of Fb(α) sum up to 1, so if they were all very small, the sum of third 
powers would be even smaller. This says that at least one of these numbers is large; indeed: 

2δ ⩽ Fb(α)3 ⩽ max Fb(α) · Fb(α)2 = max Fb(α). 
α α 

α∈Fn α∈Fn 

X X 

22 

Thus, we have just proved the following theorem. 

Theorem 2.3. Suppose F : {−1, 1}n → {−1, 1} satisfes that Prx,y∈{−1,1} [F (x)F (y) = F (xy)] ⩾ 12 + δ. 
Then there exists α ∈ Fn such that Fb(α) ⩾ 2δ.2 

Tracing back, we see that 

1 1 1 
Pr [f(x) = hα(x)] = (1 + cα) = (1 + Fb(α)) ⩾ + δ, 
x 2 2 2 

so Theorem 2.3 gives a positive answer to our guess, and indeed any f satisfying (1) must be correlated with 
a Hadamard codeword. We are therefore done arguing about the frst item in Section 2. 

In the future, we may need an additional property regarding Fourier coeffcients that is related to this 
test. In words, Theorem 2.3 guarantees that under the condition specifed therein, there is a Fourier character 
on which F has a signifcant coeffcient. Can there be many such Fourier coeffcients? 

Lemma 2.4. Suppose F : {−1, 1}n → {−1, 1} is any function, and let ε > 0. Then the number of α’s such 
that Fb(α) ⩾ ε is at most 1/ε2 . 

Proof. Denoting the number of these v’s by k, we note that by Parseval’s equality, � � 
1 = E F (z)2 = 

X bF (α)2 ⩾ kε2 , 
z 

α 

and re-arranging gives k ⩽ 1/ε2 . 

Next, we shift our attention to the second item in Section 2. 

2.2 The Noisy Linearity Test 

Theorem 2.3 gives us a tester for the Hadamard code which almost fts the conditions stated in 1.3. The 
main difference is that in the soundness, we managed to show correlation with a Hadamard codeword, as 
opposed to correlation with a long-code codeword. As discussed earlier, we will not be able to fully resolve 
this issue under the standard notion of what “correlation” is; there are less standard notions which we will be 
able to achieve. For the moment, we will adapt an ad hoc ad approach, but remark that the more principled 
notions are concerned with parameters called “infuences” and “low-degree infuences” of a function; we 
may discuss them at a later point in the course. 

So, how do we turn Theorem 2.3 into a result that at least somewhat resembles correlation with a long 
code word? Well, morally speaking, our goal here is to distinguish between functions of the form χv for v 
which has large cardinality (we will want to penalize them so that the test rejects them often), and functions 
χv for which the cardinality of v is small. 
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2.2.1 Applying Noise 

To motivate our approach consider the α = e1, so that χα(z) = z1, and α = e1 + . . . + er, where r is a 
large constant, so that χα(z) = z1 · · · zr. Suppose we have an input z ∈ {−1, 1}n , and we lightly perturb 

′it to arrive at an input z ∈ {−1, 1}n . By that, we mean that we take an ε-biased distributed a ∈ {−1, 1}n , 
′meaning that ai = 1 with probability 1 − ε and otherwise ai = −1, and defne z = az. What can we say 

about χα(z) and χα(z ′ ) in the two cases above? 

1. If α = e1, then χα(z ′ ) = a1z1 = a1χv(z), so χα(z ′ ) = χv(z) with probability 1 − ε. Thus, the 
values of the function on these two points are very correlated. 

r rQ Q
2. If α = e1 + . . . + er, then χα(z ′ ) = χα(z) ai. Looking at ai and thinking of r as a large 

i=1 i=1 
constant, the distribution of the products seems to be close to uniform in {−1, 1}. Indeed, if r > 1/ε 
we expect there would be few −1’s among a1, . . . , ar, and if r is much larger than that we expect that 
the probability there would be an odd number of −1’s to be roughly 1/2. This turns out to be true, 
hence if r > r0(ε), the values χα(z ′ ) and χα(z) are barely correlated. 

The above observation points out to a property that distinguishes Hadamard codewords corresponding to v 
of small support size (which we think of as long-code words), and Hadamard codewords corresponding to 
v of large support size. This property is called noise sensitivity. 

Upon seeing this, a natural test to consider would be: (1) apply the linearity test, that is, choose x, y ∈ 
{−1, 1}n and check that F (x)F (y) = F (xy), and (2) apply the noise test, that is, choose a ∈ {−1, 1}n 

which is ε-biased, and check that F (xa) = F (x). This combined test can be shown to work (well, almost), 
in the sense that long-code codewords pass it with probability 1 − ε, and if the test passes with probability 
1/2 + ε on F , then F is correlated with χv for v of small cardinality. 

The primary issue with this test is that it is no longer of a 3Lin form. We are making an AND of two 
linear equations, which is no longer a linear equation. Hence we cannot use it to prove hardness for 3Lin. 
To resolve this issue, we need to incorporate the noise test into the linearity test. 

2.2.2 Incorporating the Noise Test into the Linearity Test 

We now present a single test that combines the linearity test and the noise test together. The test picks 
x, y ∈ {−1, 1}n uniformly and independently, and a ∈ {−1, 1}n according to the ε-biased distribution 
independently, and checks that F (axy) = F (x)F (y). We call this the noisy linearity test, and with respect 
to it we have the following theorem: 

Theorem 2.5. Let F : {−1, 1}n → {−1, 1} be a function, and ε > 0. 

1. If F is a long-code codeword, that is, F (x) = xi for some i ∈ [n], then the noisy linearity tester 
passes with probability 1 − ε. 

2. If F passes the noisy linearity tester with probability 1/2 + δ, then there is α ∈ Fn such that 2 

(1 − 2ε)|α|Fb(α) ⩾ 2δ. 

In particular, there is α of size at most ln(1/δ) such that Fb(α) ⩾ 2δ.2ε 
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Proof. For the frst item, suppose that F (x) = xi. Note that the test passes if and only if ai = 1, which 
happens with probability 1 − ε, and the frst item is proved. 

For the second item, note that under the assumption we have that 

E [F (axy)F (x)F (y)] ⩾ 2δ. 
x,y,a 

We now use the Fourier expansion of F as in Theorem 2.3. We have   X 
E [F (x)F (y)F (axy)] = E  Fb(α)Fb(β)Fb(γ)χα(x)χβ (y)χγ (x)χw(y)χγ (a) 

α,β,γ∈Fn 
2 

x,y∈{−1,1}n,a x,y∈{−1,1}n,a X 
= Fb(α)Fb(β)Fb(γ)E [χα⊕γ (x)]E [χβ⊕γ (y)]E [χγ (a)]. 

x y a 
α,β,w∈Fn 

2 

X X 

2 

As before, unless α = β = γ the corresponding summand is 0. As for the expectation over a, we have   Y Y Y 
E [χγ (a)] = E  ai = E [ai] = (1 − 2ε) = (1 − 2ε)|γ|. 
a a a 

i:γi=1 i:γi=1 i:γi=1 

2 

Combining, we get that 

2δ ⩽ E [F (x)F (y)F (axy)] ⩽ (1 − 2ε)|α|Fb(α)3 ⩽ max(1 − 2ε)|α|Fb(α) Fb(α)2 , 
αx,y∈{−1,1}n,a 

α∈Fn α∈Fn P 

2 

and the proof is concluded by appealing to Parseval’s equality to say that Fb(α)2 = 1. 
α∈Fn 

Theorem 2.5 is an important milestone towards proving the hardness of approximation of 3Lin, and 
provided a very strong form of the PCP theorem called Unique-Games PCPs (which is conjectured to exists 
but not known), it implies Theorem 1.1 almost immediately. 

To see a proper NP-hardness result though we will need to work harder. This will also allow us to see 
where the structure of the constraints in our PCP theorem enters the picture at all. 

3 Utilizing the Long-code Encoding in PCPs 

3.1 Local Testing and Verifying Constraints via the Long-code 

Having designed a dictatorship tester that fts the mold in Section 1.3, we now try to understand how this is 
all related to getting a hardness of approximation result for 3Lin using the PCP theorem. Our intention is 
to use the ideas above to carry out a reduction from the label cover problem to the 3Lin problem, so let us 
think of a label cover instance Ψ = (L ∪ R, E, ΣL, ΣR, {Φe}e∈E ). Therein, we are supposed to assign a 
label from ΣL to each vertex u ∈ L, and a label from ΣR to each vertex from v ∈ R. In our reduction, we 
will attempt to encode the labels for the vertices of Ψ using the long-code encodings, and then use the ideas 
above to verify that the encodings that we get are indeed long-code encodings. We will also have to be able 
to verify, using these encodings, constraints on the edges of Ψ. 

To be more specifc, fx a vertex u ∈ L and suppose we want to assign u the label σu ∈ ΣL. Thinking 
of “[n]” in the discussion so far as ΣL, we will want to encode that label via its corresponding long code 
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codeword, that is, by the function fu : {−1, 1}ΣL → {−1, 1} defned as fu(z) = zσu . Similarly, for 
v ∈ R, we want to encode the fact that v is supposed to get the label σv ∈ ΣL via the long-code codeword 
corresponding to the function fv : {−1, 1}ΣR → {−1, 1} defned as fv(x) = xσv . As usual in PCP though 
— and as we have seen several times by now — while when thinking about the reduction we have the 
legitimate honest encodings in mind, for the reduction to be sound we must design a tester that indeed 
makes sure that the encodings are as we expect them to be. Hence, to facilitate the soundness of such 
reduction we need to: 

1. Ensure that given functions gu : {−1, 1}ΣL → {−1, 1}, gv : {−1, 1}ΣL → {−1, 1} are indeed valid 
long-code encodings of some labels for u and v. We will not be able to guarantee such as strong 
property — even in the 99% regime we were only able to guarantee closeness to a legal codeword, 
and we are now aiming for a low-soundness result. We did see some result in the course in this regime 
– namely the plane versus line test – and here we expect to get a similar-in-spirit list decoding type 
statement, saying that we can associate gu and gv with a short list of possible labels. 

2. Check the constraint between u and v using the encodings gu and gv. 

Addressing each one of these issues separately is not too diffcult using the ideas we’ve seen so far. Indeed, 
for the frst item we can run the linearity+noise tester on each one of gu and gv separately. The second issue 
is also not very diffcult to handle, and in a sense we have seen something along these lines happening when 
we applied the quadratic Hadamard code and used it to check quadratic equations in the encoded vector. 
Still, the details in the case of the long-code are somewhat different, and we discuss them next. 

Verifying the constraints. The second item requires a bit more thought; recall that the constraint between 
u and v is a projection constraint, meaning that it is defned by a map ϕu,v : ΣL → ΣR. Thus, given a point 
x ∈ {−1, 1}ΣR , we can defne the pull-back point y = ϕ−1 (x) defned by yi = xϕu,v (i) for each i ∈ ΣL. Inu,v 
words, for each label σ ∈ ΣR, in y all coordinates corresponding to the pre-images of σ under ϕu,v have the 
value xσ. We note that if fu and fv are legitimate long code encodings of labels σu and σv, then 

fu(y) = yσu fv(x) = xσv ,= xϕu,v (σu), 

so if (σu, σv) satisfy the constraint on e = (u, v), that is, if ϕu,v(σu) = σv, then fu(y) = fv(x) for every 
choice of x. If, on the other hand, (σu, σv) do not satisfy the constraint on e = (u, v), then choosing x 
uniformly, the values of xϕu,v (σu) and xσv are independent, and hence are equal with probability 1/2. 

It follows that to address the second item, we may hope to test gu and gv by taking x ∈ {−1, 1}ΣR 

uniformly, setting y = ϕ−1 (x) and checking that gu(y) = gv(x). This almost works; the vigilant reader u,v 
may notice that the issue is that while the distribution of x is uniform, the distribution of y is not. In fact, 
the number of y’s that are possible to get in this way is negligible. Therefore, since we expect gu only to be 
correlated with a long-code codeword, it may well be the case there will be errors on all of these points y, 
making this test meaningless. 

Fortunately, this is an issue we have already encountered and we know how to solve. We can use random 
self-correction: we will take x ∈ {−1, 1}ΣR uniformly, y = ϕ−1 (x) and z ∈ {−1, 1}ΣL uniformly and then u,v 
test that gu(zy)gu(z) = gv(x). The idea is that if gu is a long-code codeword, then gu(zy)gu(z) = gu(y) 
hence the test remains the same for legitimate encodings. For the soundness now, each one of the points z 
and zy is distributed uniformly in {−1, 1}ΣL , so a malicious adversary cannot corrupt all of these locations 
together. 
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3.2 Combining the Tests into a Single Test 

Everything we said so far makes sense, but there is one signifcant issue that we have to deal with. The tester 
above check that an AND of 3 linear equations, which is not a linear equation. We could use such testers to 
prove hardness results for soundness close to 1, but since we are shooting for soundness which is close to 
1/2, this is not good enough. 

Fortunately, there is a magical way of combining all of the above testers. Namely, we can design a test 
that checks a single linear equation which incorporates together the linearity+noise tests for both gu and gv, 
as well as the constraint verifcation test. Here it is: 

1. Sample x ∈ {−1, 1}ΣR uniformly and set y = ϕ−1 (x).u,v 

2. Sample z ∈ {−1, 1}ΣL uniformly and a ∈ {−1, 1}ΣL according to the ε-biased measure. Namely, 
for each i ∈ ΣL independently, set ai = 1 with probability 1 − ε, and ai = −1 otherwise. 

3. Test that gu(zya)gu(z) = gv(x). 

We analyze the test in the following theorem, and to state it we need to introduce some notation. For a 
πodd(α) ∈ FΣRcharacter α ∈ FΣL , we defne β = as the vector β in which βj = 1 if and only if the 2 u,v 2 P 

number of preimages i of j under ϕu,v such that αi = 1 is odd. In other words, βj = αi. 
i:ϕu,v (i)=j 

Theorem 3.1. Suppose that gu : {−1, 1}ΣL → {−1, 1} and gv : {−1, 1}ΣR → {−1, 1} are functions such 
that Prx,y,z,a [gu(zya)gu(z) = gv(x)] ⩾ 1 + δ. Then2 X 

(ϕodd gbu(α)2 gbv (α))2 ⩾ δ2 .u,v 

|α|⩽ ln(1/δ) 
ε 

Proof. From the premise of Theorem 3.1, we have that 

E [gu(zya)gu(z)gv(x)] ⩾ 2δ, 
x,y,z,a 

and we next use Fourier analysis to analyze the left hand side. We have   X X X E [gu(zya)gu(z)gv(x)] = E  gbu(α)χα(zya) gbu(γ)χγ (z) gbv(β)χβ(x) 
x,y,z,a x,y,z,a 

α∈FΣL γ∈FΣL β∈FΣR 
2 2 2X 

= gbu(α)gbu(γ)gbv(β) E [χα(zya)χγ (z)χβ(x)], 
x,y,z,a 

ΣLα,γ∈F2 
ΣRβ∈F2 

and we analyze the inner expectation. By the multiplicativity of characters, we get that � � 
E [χα(zya)χγ (z)χβ(x)] = E [χα(a)]E [χα⊕γ (z)]E χβ(x)χα(ϕ

−1 (x)) .u,v 
x,y,z,a a z x 

The frst expectation is equal to (1 − 2ε)|α|, the second expectation is non-zero if and only if α = γ. As for 
the third expectation, we note that Y Y 

χα(ϕ
−1 ϕ−1 
u,v(x)) = u,v(x)i = xϕu,v (i) = χϕodd (α)(x), u,v 

i:αi=1 i:αi=1 
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h i 
= ϕodd so the last expectation is equal to Ex χβ⊕ϕodd (α)(x) , hence it is non-zero if and only if β (α). Thus,u,vu,v 

we get that X 
2δ ⩽ E [gu(zya)gu(z)gv(x)] = (ϕodd (1 − 2ε)|α|gbu(α)2 gbv (α)).u,v 

x,y,z,a 
α∈FΣL 

2 

In the previous argument, at this stage we simply pulled out one of the Fourier coeffcients outside and used 
Parseval’s inequality to bound, but this time a bit more care is needed. Taking square and using Cauchy-
Schwarz, we get that  2 X 

(ϕodd 
(2δ)2 ⩽  gbu(α) · (1 − 2ε)|α|gbu(α)gbv (α))u,v 

α∈FΣL X 
2 X 

(ϕodd ⩽ gbu(α)2 · (1 − 2ε)2|α|gbu(α)2 gbv (α))2 
u,v 

α∈FΣL α∈FΣL X2 2 

(ϕodd = (1 − 2ε)2|α|gbu(α)2 gbv (α))2 .u,v 

α∈FΣL 
2 

Note that the contribution from α such that |α| ⩾ ln(1/δ)/ε is at most 

2 ln(1/δ) X 
(ϕodd −4 ln(1/δ)(1 − 2ε) ε gbu(α)2 gbv (α))2 ⩽ e = δ4 ,u,v 

ΣLα∈F2 

so we conclude that X X 
(ϕodd (ϕodd gbu(α)2 gbv (α))2 ⩾ (1 − 2ε)2|α|gbu(α)2 gbv (α))2 ⩾ δ2 .u,v u,v 

|α|⩽ ln(1/δ) |α|⩽ ln(1/δ) 
ε ε 

3.3 What Does Theorem 3.1 Even Mean? 

Ideally, instead of Theorem 3.1 we would have liked to say that there is an α with small cardinality such 
that the product |gbu(α)| gbv(ϕodd(α)) is signifcant. This means that each one of the Fourier coeffcients u,v 

|gbu(α)| and gbv(ϕodd(α)) is signifcant. We encourage the reader to indeed think of Theorem 3.1 for now u,v 
in this way, and next explain how one may go about using such statement. 

Note that if both α and ϕodd(α) are not the all 0 vectors, then the supports of α and ϕodd(α) containu,v u,v 
odd(α))pairs of labels σu and σv that satisfy the constraint ϕu,v. Indeed, to see that take any σv ∈ supp(ϕu,v 

and any pre-image of it σu from the support of α (there exists such one by the defnition of ϕodd). Thus,u,v 
looking at the Fourier coeffcients of gu gives us potential way of choosing labels for u: look at all of the 
α’s of small cardinality such that |gbu(α)| is signifcant, choose one of them, and choose the label σu of u to 
be random from the support of α. This is indeed going to be the idea, however the execution will be a bit 
different so as to work with the conclusion we get from Theorem 3.1. 

There is one issue though: what if the α that we chose is ⃗0? In that case, we would not be able to get any 
label out of it. We will ensure that this never happens by forcing the Fourier coeffcients of our functions gu 

and gv corresponding to ⃗0 to always be 0. Note that 

gbu(⃗0) = E [gu(z)], 
z 
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so we will want to force gu has expectation 0. We will do that by forcing gu to be an odd function, meaning 
that g(−z) = −g(z). We note that dictatorships (which are legitimate assignments) are odd functions, so 
this will not hurt our completeness. To achieve this, we will use a technique called folding. 

4 NP-hardness of 3Lin: the Proof of Theorem 1.1 

In this section, we combine the tools we developed over the last few lectures to prove Theorem 1.1. We do 
so by reducing from the PCP theorem proved in previous lectures, which we restate below for convenience. 

Theorem 4.1. For all η > 0, there is k ∈ N such that the problem gap-Label-Cover[1, η] is NP-hard on 
instances with alphabet size at most k and bi-regular constraint graphs. 

In the next section, we give a formal description of the reduction from label cover to 3Lin. Following that 
in subsequent sections, we analyze the completeness and the soundness of the reduction. For convenience, 
we will reduce the label cover problem to weighted version of the 3Lin problem, in which each equation 
is assigned a weight, and instead of counting the fraction of equations that are satisfed, we count the total 
weight of the equations that are satisfed.3 

4.1 The Reduction 

Given a label cover instance Ψ = (G = (L ∪ R, E), ΣL, ΣR, Φ = (ϕe)e∈E ), we construct a weighted 3Lin 
instance (X, E, w) as follows. 

The variables of the system. For every vertex u ∈ L and a location in its long-code z ∈ {−1, 1}ΣL we 
create a variable gu(z). For every vertex v ∈ R and a location in its long-code x ∈ {−1, 1}ΣR , we create a 
variable gv(x). 

The equations of the system. The equations and the weights of them are defned according to the follows 
randomized process: 

1. Choose an edge (u, v) ∈ E uniformly. 

2. Take x ∈ {−1, 1}ΣR uniformly and z ∈ {−1, 1}ΣR uniformly. Let y = ϕ−1 (x).u,v 

3. Take a ∈ {−1, 1}ΣR according to the ε-biased distribution, that is, ai = 1 with probability 1 − ε and 
otherwise ai = −1. 

4. Create the equation gu(ayz)gu(z)gv(x) = 1. 

Folding the variables. Recall that for each u, viewing the assignment to the variables gu(z) as a function 
over z, we wanted to ensure that gu is an odd function. We can do this by having a variables only for z such 
that z1 = 1. Thus, in each equation in which a variable gu(z) appeared wherein z1 = −1, we can replace it 
by −gu(−z). Thus, the number of variables in our system is in fact smaller and an assignment to them only 
specifes the values of the function gu on half of the points in {−1, 1}ΣL . There is a unique way though to 

3As in the case of the Set-cover problem, there are standard techniques that can be used to convert this result into a NP-hardness 
result for unweighted instances. 
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complete these values to an odd function, and this is the function that we will have in mind as specifed by 
an assignment of values to the constructed system of linear equations. 

This completes the description of the reduction, and we next analyze it. 

4.2 The Completeness of the Reduction 

Lemma 4.2. If Ψ is satisfable, then there is an assignment to (X, E, w) that satisfes at least 1 − ε fraction 
of the equations. 

Proof. Suppose that Ψ is satisfable, and let AL and AR be satisfying assignments. We defne an assignment 
to the variables of the equations by giving to gu(z) the value zAL(u), and giving to gv(x) the value xAR(u). 
A randomly chosen equation from the system takes the form gu(ayz)gu(z)gv(x) = 1 for (u, v) ∈ E chosen 
uniformly and x, y, z, a as above, which using our chosen assignment this equation amounts to 

(ayz)AL(u)zAL(u)xAR(v) = 1. 

Note that the left hand side is equal to 

aAL(u)yAL(u)zAL(u)zAL(u)xAR(v) = aAL(u)yAL(u)xAR(v) = aAL(u)xϕu,v (AL(u))xAR(v) = aAL(u), 

where in the last transition we used the fact that AL and AR satisfy all constraints, and in particular the 
constraint on e = (u, v), so ϕu,v(AL(u)) = AR(v). Thus, as the probability that aAL(u) = 1 is 1 − ε, we 
get that our assignment satisfes 1 − ε fraction of the equations. 

4.3 The Soundness of the Reduction 

Fix ε > 0. We show that for every δ > 0, for suffciently small η > 0, if at least 1 + δ of the equations 2 
can be satisfed, then we can fnd an assignment to Ψ satisfying at least δ ′ > 0 fraction of the constraints. 
Formally: 

Lemma 4.3. For all ε, δ > 0 there is δ ′ > 0 such that if there is an assignment to (X, E, w) satisfying at 
least 1/2 + δ of the equations, then val(Ψ) ⩾ δ ′ . 

Thus, taking η in the PCP to be smaller than δ’, we conclude that if val(Ψ) < η, then at most 1 + δ of2 
the equations in the system can be satisfed, which gives the soundness of the construction. 

The rest of this section is devoted to the proof of Lemma 4.3. For an edge e = (u, v) ∈ E, denote 

δu,v = E [gu(ayz)gu(z)gv(x)]. 
x,z,a 

Note that the fraction of equations that are satisfed is E(u,v)∈E [(1 + δu,v)/2], so by the assumption we get 
that E(u,v)∈E [δu,v] ⩾ 2δ. Thus, defning 

E ′ = {e ∈ E | δe ⩾ δ} , 

and noting that δu,v ⩽ 1 always, we get by an averaging argument that E ′ contains at least δ fraction of the 
edges in E. We next describe a probabilistic assignment to Ψ, and show that it satisfes each edge in e ∈ E ′ 

with signifcant probability. 
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4.3.1 Defning the Probabilistic Assignment 

Next, we describe a probabilistic assignment to the vertices of Ψ based on the functions gu and gv. 

The assignment to the left vertices. We defne the assignment for u ∈ L as follows. Looking at the 
values of the variables gu(z) as values of a Boolean function gu, we note that by Parseval’s equality that P � � 

gbu(α)2 = Ez gu(z)
2 = 1, so gbu(α)2 is a distribution over characters. Thus, to choose the label of u, 

α 

we choose α ∈ FΣL with probability gbu(α)2, and then choose AL(u) uniformly from the support of α.2 

The assignment to the right vertices. We defne the assignment for a vertex v ∈ R in a similar way. We 
choose β ∈ FΣL with probability gbv(β)2, and then choose AR(v) uniformly from the support of β.2 

4.3.2 Analyzing the Probabilistic Assignments 

We next analyze the performance of the probabilistic assignment. Fix e = (u, v) ∈ E ′, so that we know that 
Ex,z,a [gu(ayz)gu(z)gv(x)] ⩾ δ. Hence, from Theorem 3.1 we get that X 

(ϕodd gbu(α)2 gbv (α))2 ⩾ δ2 ,u,v 

|α|⩽ log(1/δ) 
ε 

and we next relate the left hand side to the probability that the probabilistic assignment satisfes e. Inspect-
(ϕodd ing, the term gbu(α)2gbv (α))2 corresponds to the probability that u chose the character α and v chose the u,v 

= ϕodd character β (α). Note that by folding, we have ensured that α nor β can be ⃗0 (otherwise the probabil-u,v 
ity would be 0), hence there are pairs of labels in the supports of α and β that satisfy the constraint between 
u and v. Thus, conditioned on u and v picking the characters α and β, the probability that they choose a 

1pair of labels that satisfy ϕu,v is at least |α||β| . Hence, the probability that the probabilistic assignment above 
satisfes e is at least X 1 

gbu(α)2 gbv(ϕodd(α))2 ⩾ 
X 1 

gbu(α)2 gbv(ϕodd(α))2 
u,v u,v|α| ϕodd 

u,vα 
(α) 

|α|⩽ log(1/δ) 
|α|2 

ε 

ε2 X 
(ϕodd ⩾ gbu(α)2 gbv (α))2 

u,vlog(1/δ)2 

|α|⩽ log(1/δ) 
ε 

ε2 

⩾ δ2 . 
log(1/δ)2 

Therefore, letting We be the event that the probabilistic assignment satisfes the edge e, we have thatP 
We represents the number of constraints in Ψ that are satisfed, and 

e∈E " #X X X ε2 ε2 

δ2 δ2E We ⩾ E [We] ⩾ = 
log(1/δ)2 log(1/δ)2 

e∈E e∈E ′ e∈E ′ 

E ′ 
ε2 

⩾ δ3 |E| . 
log(1/δ)2 

ε2In particular, there is an assignment to Ψ satisfying at least δ ′ = 
log(1/δ)2 δ

3 of the constraints. 
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