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Dor Minzer 

Today, we prove it is NP-hard to approximate the set-cover problem within any constant factor. 

1 The Set-cover Problem 

An instance of the set cover problem consists of a universe U as well as a collection subsets S1, . . . , Sm ⊆ U . 
The goal is to fnd the smallest number of subsets, that is I ⊆ {1, . . . ,m} of smallest size, such that {Si}i∈IS 
cover all of the universe U , namely Si = U . Set cover is a classical NP-hard problem, and today wei∈I 
will study it via the approximation len. 

1.1 An Approximation Algorithm for Set-cover: the Greedy Algorithm 

The greedy algorithm for set cover is probably the frst idea that comes to mind when frst facing the problem.S 
Starting with I = ∅ and maintaining A = U \ Si, the idea is that at each step the algorithm picks the i∈I 
set Si that covers as many of elements from A as possible, add i to I and continue. The following result 
states the performance of the greedy algorithm: 

Theorem 1.1. Let (U , {Si}i∈I ) be a set cover instance whose smallest cover has size k. Then the above 
greedy algorithm fnds a set cover of size at most k ln(|U|). 

Proof. Let t ∈ N be a parameter representing the step in the algorithm, let At be the set of uncovered 
elements in step t and let it be the index of the set we chose at that time. Consider a step t in the algorithm; 
since there is a set cover of U consisting of k sets, there are k sets that cover At, so at least one of them covers 
at least 1/k fraction of the elements from At. Since we picked Sit greedily, it follows that |Sit ∩ At| ⩾ |At| ,k 
hence � � 

1 |At+1| = |At \ (At ∩ Sit )| = |At| − |At ∩ Sit | ⩽ 1 − |At| . 
k 

Thus, |At| ⩽ 
� 
1 − 1 

�t |U| and taking t = k ln(|U|) we get that At = ∅, hence we end up with a cover. k 

In words, denoting n = |U| to be the size of the universe of the set cover instance, we have shown that 
there is a ln n approximation algorithm for set cover. Can one do better than this? 

1.2 (ℓ, m)-system sets: A Gadget for Set-cover 

The rest of this lecture is devoted to establishing hardness of approximation results for set cover. To do that, 
we introduce a general framework in hardness of approximation, in which we frst design a gadget — which 
is a mini instance of the problem we want to prove hardness for — that has a very good intended solution, 
but any other solution to it is signifcantly worse. We use this instance in a way that the “intended solutions” 
encode satisfying assignments to a label cover instance, and use it to do a reduction from label cover. 
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Defnition 1.2. An (ℓ, m, n) set system consists of a universe U of size n and a collection of m sets 
A1, . . . , Am and their complements B1 = A1, . . . , Bm = Am. 

We say such collection forms an (ℓ, m, n) instance if any collection of subsets {Ai}i∈I and {Bi}i∈I ′ 
′that covers U must contain a set and its complement, that is I ∩ I ̸= ∅. 

In words, an (ℓ, m, n) set system is an instance of set cover that has a cover of size 2 (by taking a set 
and its complement), and any other cover (possibly much larger) must contain such cover. We have the 
following lemma proving the existence of (ℓ, m, n) systems 

Lemma 1.3. For all ℓ ∈ N, there is an (ℓ, 2ℓ, 2ℓ) set system, and furthermore this system can be constructed 
in time 2O(ℓ). 

Proof. Take U = {0, 1}ℓ, and defne 

Ai = {x ∈ U | xi = 0} , Bi = {x ∈ U | xi = 1} . 

We leave it to the reader to verify this is an (ℓ, 2ℓ, 2ℓ) set system. 

2 A Reduction form Label-cover to Set-cover 

We need the PCP theorem proved in previous lectures with an additional assumption of regularity. A bipartite 
graph G = (L ∪ R, E) is called bi-regular if all of the vertices in L have the same degree, and all of the 
vertices in R have the same degree.1 

Theorem 2.1. For all ε > 0, there is k ∈ N such that the problem gap-Label-Cover[1, ε] is NP-hard on 
instances with alphabet size at most k and bi-regular constraint graphs. 

We use Theorem 2.1 to prove a strong hardness of approximation result for set cover. It will be easier 
for us to work with weighted version of the set-cover problem; in the problem set, you will see that hardness 
for weighted set-cover can be converted to hardness for standard instances of set cover. 

A weighted set cover instance is composed of a universe U , a collection of sets S1, . . . , Sm ⊆ U as well 
as a weight function w : {1, . . . ,m} → [0, ∞) indicating, for each set Si, its weight. The problem is to fnd 
the minimum weight set cover of U , that is fnd I ⊆ {1, . . . ,m} such that (Si)i∈I cover all of the universe P 
U , and w(i) is as small as possible. We note that the standard set-cover problem corresponds to the case 

i∈I 
that the weight function w is the constant 1 function. 

For a, b ∈ N, we denote by gap-Weighted-set-cover[a, b] the problem in which one is given an instance 
of weighted set-cover that either has a cover of weight at most a, else all covers have weight at least b. 

Theorem 2.2. For all ε > 0, there is ℓ ∈ N such that the problem gap-Weighted-set-cover[ℓ, ℓ ] is NP-hard. ε 

The rest of this section is devoted to the proof of Theorem 2.2. 

2.1 The Reduction from Label-cover to Set-cover 

We show a reduction from gap-Label-cover[1, ε] and use Theorem 2.1 to fnish off the proof. Namely, we 
show a polynomial time reduction that maps an instance Ψ = (G = (L ∪ R, E), ΣL, ΣR, {Φe}e∈E ) of 
Label-cover to an instance (U , {Si}i∈I , w) of weighted set cover such that: 

1We remark that the additional bi-regularity condition in 2.1 can be quite easily ensured elementary transformations. 
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1. If Ψ is satisfable, then (U , {Si}i∈I , w) has a set cover of weight a = 2 |L|. 
12. If Ψ is at most ε-satisfable, then (U , {Si}i∈I ) has no set-cover of weight b = √ |L|.

8 ε 

Choose ℓ = |ΣR|, and take an (ℓ, 2ℓ, 2ℓ) set system (A1, . . . , Aℓ, B1, . . . , Bℓ) with universe U as in 
Lemma 1.3. Re-labeling the indices, we think of the sets A1, . . . , Aℓ and B1, . . . , Bℓ as being indexed 
by ΣR (in other words, we identify {1, . . . , ℓ} with ΣR). 

The universe of the set cover instance. The universe of the set-cover instance we construct is tuples of 
edges from Ψ and universe elements of the set system, namely U = E × U . 

The sets in the set cover instance. Recall that Ψ is a projection label cover, meaning that for every each 
e = (u, v) ∈ E we have a map ϕe : ΣL → ΣR such that Φe = {(σ, ϕe(σ)) | σ ∈ ΣL}. We defne a set in 
our system, Su,σu for each vertex u ∈ L and σu ∈ ΣL, as well as a set Sv,σv for each v ∈ R and σv ∈ ΣR. 
For v ∈ R and σv ∈ ΣR we take [ 

Sv,σv = {e} × Bσv . 
u:(u,v)∈E 

In words, we pick the B-set from our set system corresponding to σv, take several copies of it and attach to 
each one of them a name, which is the edge in the graph we associate it with. 

For u ∈ L and σu ∈ ΣL, we defne [ 
Su,σu = {e} × Aϕu,v (σu). 

v:(u,v)∈E 

In words, for each u and label for it σu, we go over the neighbours v of u in G, and consider the A-set in 
our set system corresponding to ϕu,v(σu). We take a union over these, but also attach a name to each copy 
representing the edge it came from. 

The weight function. Finally, we describe the weight function. If G was a regular graph (as opposed to 
bi-regular), we could have picked the weight function to be the constant 1 function, but this is not necessarily 
the case. Tracing back the construction of the label cover instance, we expect the size of L to be much larger 
than the size of R, hence there are many more sets corresponding to L than to R, and the weight function 

|L|we defne aims at balancing this out. Specifcally, we defne w(Sv,σv ) = for each v ∈ R and σv ∈ ΣR|R|
and w(Su,σu ) = 1 for u ∈ L and σu ∈ ΣL. 

2.2 High Level Idea of the Analysis 

Before proceeding to the formal analysis of the reduction, we explain the high level idea of it, and for that 
it is best to assume that |L| = |R| so that the weight function can be ignored. Let us inspect an edge e ∈ E 
in Ψ, and consider ways to cover the universe elements associated with it. For that, writing e = (u, v), 
we can only pick sets generated either by u or by v. Further, note that in the defnition of the Su-sets we 
picked A’s and in the defnition of Sv-sets we picked B’s, hence we may try to cover the universe element 
using the inteded cover in the set system. Inspecting, to do that we must pick Sv,σv and Su,σu such that 
ϕu,v(σu) = σv, namely pick up a pair of sets that were generated by a satisfying assignment of the edge 
e. Thus, the intended solution for our gadget set system can be utilized towards constructing a set cover 
(provided that we have a satisfying assignment of the edge). 
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However, by properties of our set system any pair collection of Sv and Su sets that cover all universe 
elements from {e} × U must follows this strategy to an extent. Indeed, by the properties of the set system, 
if we are forbidden from picking a pair Sv,σv and Su,σu corresponding to satisfying assignment, we would 
not be able to cover all of the elements of U , and hence not all of the elements in {e} × U . 

With this in mind, the punchline is that the satisfying-assignment based cover can be executed so long as 
we have a satisfying assignment for Ψ, which then takes care of the completeness of the reduction. As for the 
soundness of the reduction, since Ψ has no good single assignment we cannot pick one global assignment for 
Ψ that would allow us to cover all edges. In fact, any collection of sets that comes from a global assignment 
will completely cover the elements of {e} × U only for very few edges e ∈ E (since the label cover has 
small soundness). Thus, typically for a vertex u ∈ L and v ∈ R we would need to pick many of the sets it 
generated to get a complete cover. 

2.3 The Completeness of the Reduction. 

Suppose Ψ is satisfable and let AL : L → ΣL and AR : R → ΣR be assignments that satisfy Ψ. We 
choose the sets |L| + |R| sets {Su,AL(u)}u∈L and {Sv,AR(v)}v∈R and note that they form a set cover. Indeed, 
consider any element of the form (e, x) ∈ U and write e = (u, v). Then we have picked the sets Su,AL(u) 

which contains {e} × Aϕu,v (AL(u)) = {e} × AAR(v) (where we used the fact that ϕu,v(AL(u)) = AR(v) 
since (u, v) is satisfed) and Sv,AR(v) which contains {e} × BAR(v), and since AAR(v) ∪ BAR(v) = U , at 
least one of these sets contains (e, x). 

By the defnition of the weight function, it follows we have a set cover of weight 2 |L|. 

2.4 The Soundness of the Reduction 

Next, we show the soundness of the reduction. Towards this end, assume that Ψ is at most ε satisfable and 
that our set cover instance has cover C of weight at most β |L|. For u ∈ L and v ∈ R defne 

Labels(u) = {σu ∈ ΣR | Su,σu ∈ C} , Labels(v) = {σv ∈ ΣR | Sv,σv ∈ C} . 

In words, for each vertex in the graph we defne the set of labels that are associated with sets that are in our 
set cover C. Then the total weight of the set cover instance is X |L| X 

|Labels(u)| + |Labels(v)| ,
|R|

u∈L v∈R P 
and by assumption this is at most β |L|. Thus, we get that |Labels(u)| ⩽ β |L| hence by an averaging 

u∈L 
argument for at least 3/4 of u ∈ L we have that |Labels(u)| ⩽ 4β, and we refer to such vertices as good.P 1 P 
Also, |

|
R
L|
| |Labels(v)| ⩽ 4β |L| hence |R| |Labels(v)| ⩽ 4β so by an averaging argument for at least 
v∈R v∈R 

3/4 of v ∈ R we have that |Labels(v)| ⩽ 4β; we also refer to such vertices as good. 
Note that sampling e ∈ E and writing e = (u, v), by the bi-regularity of G, the vertex u is distributed 

uniformly in L and hence is good expect with probability 1/4, and v is distributed uniformly in R and hence 
is good expect with probability 1/4. Thus, both endpoints of e are good with probability at least 1/2, and 
we denote the set of these edges by E ′ ⊆ E. We will show an assignment that satisfes many of these edges. 

The following claim says that if for every edge e = (u, v) ∈ E, the label sets Labels(u) and Labels(v) 
contain a pair of assignments that satisfy the constraint on e. 

4 



Claim 2.3. Let e ∈ E be any edge, and write e = (u, v). Then there are pairs of labels σu ∈ Labels(u) and 
σv ∈ Labels(v) that satisfy Φe, namely such that (σu, σv) ∈ Φe. 

Proof. Otherwise, looking at the universe elements of the form (e, x), only the sets Sv,σ and Su,σ ′ may 
cover them, and if there is no pair such as in the claim, then all of these sets from C give us elements of the 
form {e} × Ai for i ∈ I and {e} × Bj for j ∈ J where I ∩ J = ∅. By the properties of our set system, 
(Ai)i∈I , (Bj )j∈J do not form a cover of U , hence there is some x ∈ U not covered by them, and then 
(e, x) ∈ U is not be covered. 

The list decoding assignment. We are now ready to describe a good assignment for Ψ by an idea called 
list decoding. The idea that for edges e = (u, v) ∈ E ′ , the list of labels of u and v are short, and by 
Claim 2.3 contain a pair of satisfying assignment. Thus, if we pick a label for each vertex uniformly from 
its list, the probability that an edge e = (u, v) ∈ E ′ is satisfed is at least 1 over the product of the sizes of 
the lists of u and v, which is signifcant (as these lists are short). 

More precisely, defne AL and AR in a randomized manner;: for each u ∈ L independently, pick 
AL(u) ∈ Labels(u) uniformly, and for each v ∈ R pick AR(v) ∈ Labels(v) uniformly. We analyze the 
expected fraction of edges that AL and AR satisfy. Fix e ∈ E ′ and write e = (u, v). Then by Claim 2.3 
there is a pair of labels σ⋆ ∈ Labels(u) and σ⋆ ∈ Labels(v) that satisfy the constraint between u and v, and u v 

1 1 1we note that Pr [AL(u) = σ⋆] = ⩾ 4β since u is good. Similarly, Pr [AR(v) = σ⋆] ⩾ 4β , andu |Labels(u)| v 
since these events are independent it follows that 

Pr [AL, AR satisfy e] ⩾ Pr [AL(u) = σ ⋆ ]Pr [AR(v) = σ ⋆ ] ⩾ 
1 

u v 16β2 

Hence, by linearity of expectation, the expected number of constraints that AL and AR satisfy is at least 
|E ′ | |E|= 

32β2 , in particular it follows that there is an assignment to Ψ satisfying at least 1/32β2 fraction of 
16β2 

1constraints. As val(Ψ) ⩽ ε, it follows that β ⩾ √ . This fnishes the soundness analysis. 
8 ε 

2.5 Refecting on Theorem 2.2 

One immediate corollary of Theorem 2.2 is that it is NP-hard to approximate the set-cover problem within 
any constant factor. In fact, it turns out that one can prove super-constant hardness of approximation results 
for set cover using this approach, and even get hardness of approximation result of up to factor Θ(log n). 
To do that, one needs to make sure that ℓ is a not-too-large-growing function of the instance size (which is 
the alphabet size of Ψ), and that the soundness of the label-cover instance is vanishing with the instance size 
at suffcient rate (say ε = 1/ log n). This is an example where PCPs with sub-constant soundness come in 
handy in hardness of approximation results, but we will not elaborate on this further. 

We remark that by now it is known that it is NP-hard to approximate Set-cover within factor (1 − 
o(1)) ln n, which is optimal by the greedy algorithm above. 
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