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Dor Minzer

In this lecture we present the parallel repetition theorem, an amplification result that allows us to prove
a PCP theorem with small soundness.

1 Gap Amplification via Parallel Repetition

Recall the basic PCP theorem:

Theorem 1.1. There are absolute constant ε > 0 and k ∈ N such that the problem gap-Label-Cover[1, 1−ε]
is NP-hard on instances with alphabet size at most k.

Our goal in this lecture is to prove an improved form of Theorem 1.1, in which the soundness is small:

Theorem 1.2. For all ε > 0, there is k ∈ N such that the problem gap-Label-Cover[1, ε] is NP-hard on
instances with alphabet size at most k.

We intend to use Theorem 1.1 to prove Theorem 1.2; how can we do that? Given a label-cover instance,
how do we construct a harder label-cover instance? To motivate this discussion, we take the 2-prover-1-
round view on Theorem 1.1.

Suppose we have a computationally weak verifier V and two all powerful provers P1 and P2 that do not
communicate. All 3 parties have a common label cover instance Ψ, and the verifier wishes to distinguish
between the case that val(Ψ) = 1 and the case that val(Ψ) ⩽ 1 − ε. To do that, the verifier may ask each
one of the provers a question, get an answer and decided whether to accept or reject.

Write Ψ = (G = (L ∪ R,E),ΣL,ΣR, {Φe}e∈E). To execute the task above, the verifier can sample
an edge e = (u, v) ∈ E uniformly, send u to P1 and v to P2, and get labels σu ∈ ΣL and σv ∈ ΣR from
them. The verifier then checks that these labels satisfy the constraint on e, that is that (σu, σv) ∈ Φe, and if
so accepts (and otherwise rejects).

It is easy to see that if val(Ψ) = 1, then there are provers’ strategies that make V accept with probability
1. It is also true, and not very difficult to show (try!), that if val(Ψ) ⩽ 1 − ε, then no provers’ strategy can
make V accept with probability more than 1− ε. Hence, the prover has a good advantage in distinguishing
between two cases. Still it is only an ε advantage, and a natural question is how can V increase it?

1.1 Sequential Repetition

The first idea that comes to mind is that V should just repeat this protocol several times. Namely, after
sampling an edge, sending each one of the endpoints to one of the provers, receiving answers and checking
the constraint, the verifier could repeat this process again by sampling another edge and so on. Thus,
we get a 2-prover-multiple-round game, an it is easy to show that the advantage of V indeed increases.
Unfortunately, 2-prover-multiple-round games do not have a simple PCP interpretation and we will not be
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able to prove Theorem 1.2 using this idea. An essentially identical idea is for V to have access to t pairs
of provers (Pi, P

′
i ) for i = 1, . . . , t, and for each one of the pairs run the basic 2-prover-1-round game as

before, independently. This operation, too, increases the advantage of the verifier, however the analogous
PCP interpretation this would give us is a PCP with more than 2 queries (2t queries to be precise), which is
not good enough for proving Theorem 1.2.

1.2 Parallel Repetition

The next idea is that we should adapt the idea above while making sure to keep the number of provers to
be exactly 2. A natural variant is to simply send each one of them multiple challenges. That is, the t-fold
repeated game proceeds by the verifier V picking t edges e1, . . . , et ∈ E uniformly at random, denoting
ei = (ui, vi) for i = 1, . . . , t and send all of the challenges to each one of the provers in a single shot. That
is, the verifier sends the first prover (u1, . . . , ut) and sends to the second prover (v1, . . . , vt), and excepts to
get from each one of them a tuple of labels, say (σu1 , . . . , σut) and (σv1 , . . . , σvt). The verifier then checks
that for all i = 1, . . . , t, the corresponding pair of labels (σui , σvi) satisfies the constraint on ei, that is that
(σui , σvi) ∈ Φei , and if so accepts and otherwise rejects. We call this game the t-fold repeated game, and
denote it by Ψ⊗t.

So what does this operation do? Well clearly, if val(Ψ) = 1, the provers can simply assign their vertices
according to some pair of satisfying assignments AL : L → ΣL and AR : R → ΣR and make the verifier
accept with probability 1. Also, if val(Ψ) ⩽ 1−ε, then on each one of the challenges ei, the provers manage
to win with probability at most 1− ε, and since the challenges are chosen independently the probability that
they win on all t of them, and thus make the verifier accept, is at most (1− ε)t. Or is it?

1.2.1 An Instructive Example for Pitfalls in Parallel Repetition

Let us consider an example of a 2-prover-1-round game that exhibits an interesting possibility that may occur
in parallel repetition. In the basic game Ψ, the verifier picks as challenges (x, y) uniformly from {0, 1}2,
sends x to P1 and y to P2, and expects to get as answer from P1 a vector a ∈ {1, 2} × {0, 1} and from P2

a vector b ∈ {1, 2} × {0, 1}. The verifier accepts if and only if a = b = (i, σ) and prover i received σ as a
challenge.

In Ψ, the provers may use the following strategy: P1 can give an answer which is (2, 0) and P2 can give
the answer (2, 0), and the probability that they win is the probability that y = 0 which is 1/2. In general,
it can be shown that val(Ψ) ⩽ 1/2, since to win the provers must choose the same i, and conditioned on i
– say i = 1 – the second prover must send σ which is equal to x, but his answer is independent of x hence
equal to x with probability at most 1/2.

What about the value of the 2-fold repeated game, that is Ψ⊗2? The argument above says that we
should have that val(Ψ⊗2) ⩽ 1/4, alas this is false. Indeed, consider the setting of the 2-fold repeated game
in which P1 receives challenges (x1, x2) and P2 receives challenges (y1, y2), and they need to generate
a(1), a(2) ∈ {1, 2}×{0, 1} and b(1), b(2) ∈ {1, 2}×{0, 1} so that a(1) = b(1) = (i1, σ1) and Pi1 received
σ1 in their first coordinate, and a(2) = b(2) = (i2, σ2) and Pi2 received σ2 in their second coordinate. To do
that, P1 simply outputs (1, x1) and (2, x1) and P2 simply outputs (1, y2) and (2, y2). Note that if x1 = y2,
the provers win using this strategy, hence they make the verifier accept with probability at least 1/2!
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1.2.2 Where Did We Go Wrong?

For the game above Ψ, it turns out that val(Ψ⊗2) = val(Ψ), so 2-fold repetition does not change the value of
the game at all, let alone square it (as we claimed). The way the provers managed to do that is by correlating
their answers to the challenges on both coordinates, so that with some probability they fail miserably (on
both coordinates), but as a by-product they manage to win all coordinates with probability which is higher
than expected. Inspecting our earlier “proof” of val(Ψt) ⩽ val(Ψ)t, we see that we implicitly assumed that
the answer that each prover gives to the challenge on the ith coordinate only depends on that coordinate.
This need not be the case, and as the above example shows that there are cases that the provers can use this
to their advantage.

1.3 The Parallel Repetition Theorem

Still, it turns out that parallel repetition does work, in the sense that for large enough t it does decrease the
probability V accepts in the case that val(Ψ) ⩽ 1− ε. More precisely, one has:

Theorem 1.3 (The Parallel Repetition Theorem). For all ε > 0, there exists δ > 0 such that the following
holds. Let Ψ be a projection 2-prover-1-round game, and suppose that val(Ψ) ⩽ 1− ε. Then

val(Ψ⊗t) ⩽ (1− δ)t.

In words, Theorem 1.3 states that the value of the t-fold repeated game does decrease exponentially with
t. There are other interesting aspects of Theorem 1.3, such as for example the precise dependency of δ on ε,
and we may discuss that later on in the course.

We next show how to deduce Theorem 1.2 from Theorem 1.1 by appealing to the Parallel Repetition
theorem.

Proof of Theorem 1.2. Let ε0 be from Theorem 1.1, take δ0 from Theorem 1.3 for ε0 and choose t =
log(1/ε)

δ0
. Given a label-cover instance Ψ = (G = (L ∪ R,E),ΣL,ΣR, {Φe}e∈E) from Theorem 1.1,

we construct a label cover instance Ψ′ = (G′ = (L′ ∪R′, E′),ΣL′ ,ΣR′ , {Φ′
e}e∈E′) as follows. The sides of

the bi-partite graph G′ are

L′ = Lt = {(u1, . . . , ut) |ui ∈ L ∀i = 1, . . . , t} , R′ = Rt = {(v1, . . . , vt) | vi ∈ R ∀i = 1, . . . , t}

(corresponding to challenges in the setting of parallel repetition), and label sets

ΣL′ = Σt
L, ΣR′ = Σt

R.

The edge set E′ has an edge between (u1, . . . , ut) and (v1, . . . , vt) if (ui, vi) ∈ E for all i = 1, . . . , t.
The constraint on this edge then allows for tuples (σ1, . . . , σt) ∈ ΣL′ and (τ1, . . . , τt) ∈ ΣR′ such that
(σi, τi) ∈ Φui,vi for all i = 1, . . . , t. This completes the description of the reduction.

Note that the reduction runs in time nO(t), hence polynomial. Next, we analyze the completeness and
the soundness of the reduction.

Completeness. If Ψ is fully satisfiable, then we can use a satisfying assignment pair AL and AR of it to
assign all tuples in Ψ′ accordingly, and notice that it satisfies all of the constraints of Ψ.
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Soundness. If Ψ is at most 1− ε satisfiable, then as observed earlier the corresponding 2-prover-1-round
game has value which is at most 1 − ε. Note that if we have an assignment to Φ′ satisfying at least η
fraction of the constraints, then the provers may use it to win the t-fold repeated game Ψ⊗t with probability
at least η; indeed the edges of Ψ′ exactly correspond to challenges that they may face in the t-fold repeated
game. Thus, in Ψ′ at most val(Ψ⊗t) of the constraints can be satisfied, and by Theorem 1.3 we have that
η ⩽ val(Ψ⊗t) ⩽ (1− δ0)

t ⩽ ε.

2 On the Proof of the Parallel Repetition Theorem

There are several known approach to prove Theorem 1.3 but none of them is very easy. Roughly speaking,
known proofs (including the original proof by Ran Raz) go via the route of information theory, or via
spectral graph theory. Our goal here will be to give some flavor of the proof and thus we will omit many
(very crucial) details. Our presentation will follow the information theoretic approach to parallel repetition.

2.1 A Little Bit of Information Theory

There are many basic and important notions of information theory, such as entropy, mutual information and
KL-divergence and all of their condition counterparts. To simplify presentation we will define as little of
them as possible, at the expense of appealing to intuition (instead of rigorous proofs).

2.1.1 Shannon Entropy

Still, we will need the most basic notion in information theory, namely the notion of Shannon Entropy
defined as follows:

Definition 2.1. Let X be a discrete random variable getting values in X . The Shannon Entropy of X is

H(X) =
∑
x∈X

Pr [X = x] log

(
1

Pr [X = x]

)
.

Intuitively, H(X) measures the amount of randomness the random variable X. To verify this intuition,
it makes sense to ask what is the maximal entropy a random variable X over X may have, and what sort of
random variables achieve this maximum or values near it.

1. Entropy of a random variable is at most logarithm of the size of the support. Note that by Jensen’s
inequality,

H(X) =
∑
x∈X

Pr [X = x] log

(
1

Pr [X = x]

)
= E

x∼X

[
log

(
1

Pr [X = x]

)]
⩽ log

(
E

x∼X

[
1

Pr [X = x]

])
since log(z) is concave. As Ex∼X

[
1

Pr[X=x]

]
= |X|, it follows that H(X) ⩽ log(|X|).

2. Almost full entropy implies close to being uniform. For a random variable X whose distribution is
uniform over X , the previous bound it tight as then

H(X) =
∑
x∈X

1

|X|
log(|X|) = log(|X|).
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Moreover, one may observe that the uniform distribution over X is the unique distribution for which
equality holds (by inspecting the equality case of Jensen’s inequality). In fact, one can show that a
random variable X that achieves near equality, that is a random variable X that has entropy at least
log(|X|) − ε, is close to being uniformly distributed over X . Here, closeness is with respect to the
statistical distance between random variables, which is defined as: for random variables X and Y
distributed over Ω, define

SD(X,Y) =
1

2

∑
ω∈Ω

∣∣∣Pr [X = ω]− Pr [Y = ω]
∣∣∣ .

Then, we have the following result, which can be proved using a result known as Pinsker’s inequality:

Claim 2.2. If X is a distribution over X satisfying H(X) ⩾ log(|X|) − ε, then SD(X,U) ⩽
√
ε

where U is the uniform distribution over X .

2.1.2 Conditional Shannon Entropy

We will also need the notion of conditional Shannon Entropies.

Definition 2.3. Let X be a discrete random variable getting values in X , and let E be an event. Then the
Shannon entropy of X|E is

H(X|E) =
∑
x∈X

Pr [X = x |E] log

(
1

Pr [X = x |E]

)
.

Conditioning on an event can either increase or decrease the entropy of a random variable. Next, we
define the Shannon entropy of a random variable conditioned on another random variable.

Definition 2.4. Let X,Y be a discrete random variable. Then the Shannon Entropy of X|Y is

H(X|Y) = E
y∼Y

[H(X|Y = y)].

Conditioning on a random variable can never increase the entropy of a random variable:

Claim 2.5. For jointedly distributed (X,Y) discrete random variables we have that H(X|Y) ⩽ H(X).

Proof. Write for convenience px,y = Pr [X = x,Y = y] and py|x = Pr [Y = y |X = x], by Jensen’s
inequality

H(X|Y) =
∑
x

E
y∼Y

[
px|y log

(
1

px|y

)]
⩽
∑
x

E
y∼Y

[
px|y

]
log

(
1

Ey∼Y

[
px|y

]) ,

and the proof is concluded by noting that Ey∼Y

[
px|y

]
= px, so the last sum is exactly H(X).
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2.1.3 Entropy Sub-additivity

The Shannon entropy has several important properties, which are all very plausible sounding. For example,
if we think of H(X) as the amount of randomness in X, then one may expect the following connection.
Suppose we have (X,Y) that is jointedly distribution, and we look at H(X,Y), which measures the amount
of randomness in (X,Y). Then we expect it to be equal to the amount of randomness in X, plus the amount
of randomness in Y conditioned on knowing X. In notations, we expect that it will be true that

H(X,Y) = H(X) +H(Y |X).

Indeed, this is true and not difficult to prove; write for convenience px,y = Pr [X = x,Y = y] and py|x =
Pr [Y = y |X = x], then

H(X,Y) =
∑
x,y

px,y log

(
1

px,y

)
=
∑
x,y

pxpy|x log

(
1

pxpy|x

)
=
∑
x,y

pxpy|x log

(
1

py|x

)
+
∑
x,y

pxpy|x log

(
1

px

)
,

and the first term is equal to H(Y | X) while the second term is equal to H(X) (pushing the sum over y
inside and notion that the sum of py|x over y is 1). Using Claim 2.5, we conclude that Shannon entropy
sub-additivity:

Claim 2.6. Let (X,Y) be jointedly distributed discrete random variables. Then H(X,Y) ⩽ H(X) +
H(Y).

2.1.4 Entropy Decrease by Conditioning on an Event

The last fact we need about Shannon entropies is that if we have a random variable U distributed uniformly
over a set U and an event E which is not too unlikely, then the entropy of U|E is still somewhat large:

Claim 2.7. Let U be a discrete uniform random variable over a universe U , and let E be some event. Then

H(U | E) ⩾ H(U)− log

(
1

Pr [E]

)
.

Proof. We have

H(U | E) =
∑
u∈U

pu|E log

(
1

pu|E

)
=
∑
u∈U

pu|E log

(
Pr [E]

Pr [U = u ∧ E]

)
.

Since Pr [U = u ∧ E] ⩽ Pr [U = u] = 1
|U | , we get that

H(U | E) ⩾
∑
u∈U

pu|E log
(
|U | · Pr [E]

)
= log(|U |)− log

(
1

Pr [E]

)
= H(U)− log

(
1

Pr [E]

)
.
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2.2 The Information Theoretic Approach to Parallel Repetition

2.2.1 The High Level Approach

Let Ψ = (G = (L ∪ R,E),ΣL,ΣR, {Φe}e∈E) be a 2-player-1-round game as before, and consider the
t-fold repeated game. In that game, the verifier samples challenges, which are uniformly chosen edges
(X1,Y1), . . . , (Xt,Yt) ∈R E, sends the challenges X = (X1, . . . ,Xt) to the first prover, the challenges
Y = (Y1, . . . ,Yt) to the second prover, and expects answers A(X1, . . . ,Xt) = (A1, . . . ,At) from the
first prover and answers B(Y1, . . . ,Yt) = (B1, . . . ,Bt) from the second prover. We note that each answer
Ai and each answer Bi may depend on all of the challenges the respective player has received, but we omit
this from the notation to make it less cumbersome.

We say the provers win on coordinate i if (Ai,Bi) ∈ Φ(Xi,Yi), and denote this event by Wi. We also
denote by W = W1∩W2∩ . . .∩Wt the probability the players win all of the coordinates. In these notations,
our goal is to show that Pr [W ] ⩽ (1− δ)t for some δ > 0 depending only on ε.

To show this, we assume that this is not the case, and show by induction on s that then we may find
coordinates i1, i2, . . . , is such that Pr

[
Wis |Wi1 ∩ . . .Wis−1

]
⩽ 1 − ε/2 + O(

√
δ) < 1 − ε/4. Once we

show that we will be done, as then we get for s = t/100 that

Pr [W ] ⩽ Pr

[
s∧

i=1

Wi

]
=

s∏
j=1

Pr

[
Wj |

j−1∧
i=1

Wi

]
⩽ (1− ε/4)s ⩽ (1− ε/4)t/100 < (1− δ)t.

2.2.2 Overview of the Argument

For s = 1, the claim is obvious. We can take the coordinate i = 1, and note that Pr [W1] is at most the
probability the provers win in a single repetition game, which is at most 1 − ε. We now move on to the
inductive part, which is where most of the action takes place. Suppose we proved the statement for s ⩾ 0,
and let i1, . . . , is be the coordinates we found so far. Then, our goal is to find a new coordinate i such
that even conditioned on winning coordinates i1, . . . , is, the probability the provers win coordinate i is still
bounded away from 1.

To get some intuition, denote the event W⩽s = Wi1 ∩ . . .Wis , and consider the distribution over the
challenges conditioned on W⩽s, that is the distribution of (X,Y) | W⩽s. Intuitively, since the probability
of W⩽s is not very small, the overall amount of information it provides about the challenges is small, so for
a typical coordinate i we get very little information about the challenge there.

To formalize this intuition, we used the tools we developed in information theory. Let us view the
joint distribution of (X,Y) as (U1, . . . ,Ut) where each Ui is a uniformly chosen edge from G. Then by
Claim 2.7

H(X,Y |W⩽s) = H(U1, . . . ,Ut | W⩽s) ⩾ H(U1, . . . ,Ut)− log

(
1

Pr [W⩽s]

)
.

Note that H(U1, . . . ,Ut) = t log(|E|), and that Pr [W⩽s] ⩾ Pr [W ] ⩾ (1− δ)t, so we get that

H(U1, . . . ,Ut |W⩽s) ⩾ t log(|E|)− t log

(
1

1− δ

)
,

and using log(1/(1− δ)) ⩽ 2δ which holds for sufficiently small δ, we get that

H(U1, . . . ,Ut | W⩽s) ⩾ t(log(|E|)− 2δ).
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Thus, thinking of this intuitively, this says that on average, on each one of the Ui’s we lost entropy of at
most 2δ which is very little. We can formalize this by using the sub-additivity of entropy, namely Claim 2.6,
to note that

H(U1, . . . ,Ut |W⩽s) ⩽
t∑

i=1

H(Ui |W⩽s),

so combining we get that
1

t

t∑
i=1

H(Ui |W⩽s) ⩾ log(|E|)− 2δ.

In particular, there exists i = 1, . . . , t such that H(Ui | W⩽s) ⩾ log(|E|) − 2δ, and by Claim 2.2 we get
that Ui |W⩽s is close to uniform over E, namely that SD(Ui |W⩽s,U) ⩽

√
2δ.

Note that if coordinate i was sampled according to U without the conditioning, the provers would win
on it with probability at most 1 − ε by the assumption on the single repetition game. Above, we proved
that the actual distribution over challenges they have is close to U, hence we expect them to win on it with
probability which is at most 1 − ε +

√
2δ. This turns out to be true (up to little more error terms), but is

non-trivial to prove and where much of the effort in the actual proof of the parallel repetition theorem. 1

If we ignore all of these complications though, we have just proved that Pr [Wi |W⩽s] ⩽ 1− ε+
√
2δ,

as we wished.

1The reason is that to make this argument formal, we have to show that if the probability the provers win on coordinate i with
high probability 1− ε/100 and SD(Ui |W⩽s,U), then one can use that to construct too good of a strategy to the basic game (with
no repetition). To do that, one has to use the provers strategies, and in particular to be able to sample the rest of the coordinates of
the game conditioned W⩽s.
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