
18.408 Topics in Theoretical Computer Science Fall 2022
Lecture 13

Dor Minzer

In this lecture, we restate the basic form of the PCP theorem using the Label-cover problem. We show
how to use it to prove a weak hardness for approximation result for the problem of fnding the largest clique
in a graph, and then amplify this hardness. We also discuss of improved forms of the PCP theorem that are
most relevant towards applications in hardness of approximation.

1 The Label Cover Problem

We have seen most of the proof of the basic PCP theorem, asserting that for some absolute constant ε > 0,
the problem gap-CSG[1, 1 − ε] is NP-hard on instances with O(1) queries and alphabet size O(1). In the
previous lecture, we have also seen a transformation that reduces an instance of CSG with constant number
queries to a different instance of CSG with 2 queries while preserving perfect completeness and keeping the
soundness bounded away from 1. This last transformation gets us a version of the PCP theorem for special
type of constraint satisfaction called (projection) label cover problems, defned as follows.

Defnition 1.1. An instance of Label-cover Ψ consists of a bi-partite graph G = (L ∪ R, E), two alphabets
ΣL, ΣR and a projection constraint for each edge, Φ = {Φe}e∈E . By projection constraint, we mean that
for each e ∈ E, there is a map ϕe : ΣL → ΣR such that

Ce = {(σ, ϕe(σ)) | σ ∈ ΣL} .

In words, a label cover instance Ψ is a constraint satisfaction graph wherein the underlying constraint
graph is bipartite, and each constraint is of projection type. That is, for each edge e = (u, v) ∈ E, the label
of u determines the label that v should get for the constraint on e to be satisfed. The value of a label-cover
instance Ψ, denoted by val(Ψ), is the maximum fraction of constraints that can be satisfed in it.

1.1 The Basic PCP Theorem in the Language of Label Cover

We can formulate the basic PCP theorem we proved so far using the Label-cover problem, as follows:

Theorem 1.2. There are absolute constant ε > 0 and k ∈ N such that the problem gap-Label-Cover[1, 1−ε]
is NP-hard on instances with alphabet size at most k.

Theorem 1.2 is the analog of the Cook-Levin theorem for approximation problems, and as such almost
all hardness of approximation results use it as a starting point. To motivate this discussion, note that one
may associate with the Label-cover problem an approximation problem, in which the input is a Label-cover
instance Ψ, and the goal is to approximate val(Ψ). In this language, Theorem 1.2 implies that there are
ε > 0 and k ∈ N such that given an instance Ψ of Label-Cover, is NP-hard to approximate val(Ψ) within
factor 1 − ε. Recall that for a maximization problem A (such as label cover), we say an algorithm Alg
is an α-approximation, for 0 < α ⩽ 1, if on an input Ψ of A it outputs a number Alg(Ψ) such that
αOpt(Ψ) ⩽ Alg(Ψ) ⩽ Opt(Ψ).

1

Corollary 1.3. There exists ε > 0 such that given a label-cover instance Ψ with constant size alphabet, it
is NP-hard to approximate val(Ψ) within factor 1 − ε.

1Proof. Assume there is an algorithm Alg that approximates val(Ψ) in polynomial time within factor 1−ε ,
i.e. it outputs a number Alg(Ψ) satisfying that (1 − ε)val(Ψ) ⩽ Alg(Ψ) ⩽ val(Ψ). We use it to solve
gap-Label-Cover[1, 1 − ε], which fnishes the proof.

Indeed, given an instance Ψ of label cover, we run Alg(Ψ) and get a number s; we accept if s > 1 − ε
and otherwise reject. Note that if val(Ψ) = 1, then by the guarantee of the algorithm Alg(Ψ) ⩾ 1 − ε, hence
we accept. If val(Ψ) < 1 − ε, then Alg(Ψ) < 1 − ε hence we reject. Thus the described algorithm runs in
polynomial time and solves gap-Label-Cover[1, 1 − ε].

Thus, at least morally speaking one may expect one to get more hardness of approximation results from
Theorem 1.2. Indeed, shortly after the proof of Theorem 1.2 (and actually even during earlier stages of it),
researchers have been exploring connections between it and approximation problems, and today we will
begin seeing some of this wonderful theory.

2 Hardness of Approximating the Maximum Clique

Our frst example is the maximum clique problem. Recall that given a graph H = (V, E), a clique on H is
a subset of vertices S ⊆ V such that any distinct u, v ∈ S have an edge between them in H . The goal in the
maximum clique problem is to fnd, given a graph H , a clique of the largest possible size.

Clique is one of the classical NP-hard problems studied in the early 70’s, and fnding the largest possible
clique in a given graph H is NP-hard. Today, we will see that even approximating the largest clique in a
graph is NP-hard. For that, we introduce the appropriate gap notations for clique, and gap-preserving Karp
reductions. For 0 < β ⩽ α ⩽ 1, an input to the problem gap-Clique[α, β] is a graph H promised to either
contain a clique of fractional size at least α, or not contain a clique of fractional size β, and the goal is to
distinguish between these two cases.

2.1 The Basic Hardness of Approximation Result for Clique

We prove the following result:

Theorem 2.1. There are absolute constants 0 < β ⩽ α ⩽ 1 for which gap-Clique[α, β] is NP-hard.

The proof of Theorem 2.1 is by a polynomial time reduction from Theorem 1.2. Namely, we show a
polynomial time map from an instance Ψ of label cover to a graph H such that:

1. Completeness: If val(Ψ) = 1, then Clique(H) ⩾ α.

2. Soundness: If val(Ψ) < 1 − ε, then Clique(H) < β.

We leave it to the reader to verify that such reduction indeed implies that gap-Clique[α, β] is NP-hard.

Proof of Theorem 2.1. Let Ψ = (G = (L ∪ R, E, ΣL, ΣR, Φ)) be a label cover instance as in Theorem 1.2.
We construct a graph H = (V ′ , E ′) as follows. For each edge e ∈ E of Ψ and a pair of labels to its
endpoints that satisfy the constraint on e, that is (σ1, σ2) ∈ Φe, we create a vertex ve,σ1,σ2 ∈ V ′ . As for the
edges in H , we connect ve,σ1,σ2 and ve ′ ,σ ′ ,σ ′ by an edge if e, σ1, σ2 and e, σ1

′ , σ2
′ that are consistent. This

1 2

completes the description of the reduction.

2

To get a intuition for what the edges represent, we give a few examples. Suppose we have an edge
e ∈ E in the original graph, and two distinct pairs of labels that satisfy it, (σ1, σ2) ≠ (σ1

′ , σ2
′); then the

vertices ve,σ1,σ2 and ve ′ ,σ ′ ,σ ′ do not have an edge between them. Thus, in particular, a clique can contain
1 2

at most a single vertex of the form ve,σ1,σ2 for each e ∈ E. We will often refer to the collection of vertices
{ve,σ1,σ2 }σ1∈ΣL,σ2∈ΣR as the cloud of e, and in this language we have observed that the cloud of each e
forms an independent set in H . More generally, if we have two edges e1 = (u1, v1) and e2 = (u2, v2)
sharing a vertex – say the left one, i.e. u1 = u2 – as well as pairs (σ1, σ2) satisfying e1 and (σ1

′ , σ2
′)

′satisfying e1, then ve,σ1,σ2 and ve ′ ,σ ′ ,σ ′ are connected by an edge only if σ1 = σ1
′ . Thus, if we have a clique

1 2

of vertices in H , then for each vertex in the original graph u ∈ L, all vertices ve,σ1,σ2 in the clique such that
the left endpoint of e is u agree on σ1.

We denote kL = |ΣL| and kR = |ΣR|, and note that since each constraint Φe has kL satisfying pairs,
′the number of vertices in H is kL · |E| = kL · m. We now prove the completeness of the reduction for

α = 1/kL and β = (1 − ε)/kL.
Completeness: We show that if Ψ is satisfable, then H contains a clique of size m. Indeed, let

AL : L → ΣL and AR : R → ΣR be satisfying assignments, and defne

C = {ve,σ1,σ2 | e = (u, v), AL(u) = σ1, AR(v) = σ2} .

Then C is a clique in H , and |H| = m.
Soundness: We show that if Ψ is at most (1 − ε) satisfable, then the largest clique in H has size at

most (1 − ε)m. We do so counter-positively: we assume that C is a clique of size larger than (1 − ε)m, and
deduce from it a pair of assignments AL and AR that satisfy more than 1 − ε fraction of the constraints in
Ψ.

Take C to be a clique of size larger than (1 − ε)m in H . By our earlier observation for each u ∈ L
there is a value σu ∈ ΣL such that, if an edge e ∈ E contains u, say e = (u, v), is such that the clique
C contains some vertex from the cloud of e, then such vertex must be ve,σ1,σ2 for σ1 = σu. Thus, we can
defne AL(u) = σu. Similarly, for each v ∈ R there is a value σv ∈ ΣR such that, if an edge e ∈ E contains
v, say e = (u, v), is such that the clique C contains some vertex from the cloud of e, then such vertex must
be ve,σ1,σ2 for σ2 = σv. Thus, we can defne AR(v) = σv

By our earlier observations C may contain at most a single vertex from the cloud of each e ∈ E, hence
it follows that there are more than (1 − ε)m clouds from which C contains a vertex. Let E ′ ⊆ E be the set
of e ∈ E such that C contains some vertex from the cloud of e. We argue that AL, AR satisfy all edges in
E ′ , hence they satisfy at least |E ′ | /m > 1 − ε fraction of the constraints. Indeed, if e ∈ E ′ then there is a
vertex of the form ve,σ1,σ2 in C. Writing e = (u, v), by construction (σ1, σ2) satisfes the constraint Φe, and
by the choice of AL and AR we have that AL(u) = σ1 and AR(v) = σ2.

Just like in Corollary 1.3, Theorem 2.1 directly implies that it is NP-hard to approximate the size of the
largest clique in a graph within factor β/α where α, β are the number from Theorem 2.1. Inspecting, we
see that the α and β we get yield that β/α = 1 − ε where ε > 0 is some positive absolute constant. This
means that getting arbitrary good approximation of clique is NP-hard.

2.2 Hardness Amplifcation for Clique

Is it possible, though, to approximate the size of the largest clique in a graph within a not-so-good factor,
say 10, or 100? It turns out not to be possible, and to do so we amplify the result of Theorem 2.1

Theorem 2.2. There are absolute constants 0 < β ⩽ α ⩽ 1 such that for all t ∈ N, the problem
gap-Clique[αt, βt] is NP-hard.

3

	

�� �� �� ��

Thus, we get that for all t ∈ N, approximating the largest clique within factor βt/αt = (1 − ε)t is
NP-hard, and as we may pick t to be as large as we wish (but constant), any constant factor approximation
for clique is NP-hard.

Proof of Theorem 2.2. We show a reduction from Theorem 2.1. Namely, for each t ∈ N, we show a poly-
nomial time reduction from gap-Clique[α, β] to gap-Clique[αt, βt].

Given an instance G = (V, E) of gap-Clique[α, β], we produce a graph G ′ = (V ′ , E ′) as follows. The
vertices of G ′ are all t-tuple of vertices from G, that is

V ′ = {(v1, . . . , vt) | vi ∈ V ∀i = 1, . . . , t} .

As for the edges, we connect (v1, . . . , vt) and (u1, . . . , ut) by an edge if for all i = 1, . . . , t, either (vi, ui) ∈
E or vi = ui. This completes the description of the reduction.

Completeness: We show that if G contains a clique of size at least α |V |, then G ′ contains a clique of
size at least αt |V ′ |. Indeed, let C ⊆ V be a clique of size at least α |V |, and defne

′ C = {(v1, . . . , vt) | vi ∈ C ∀i = 1, . . . , t} .

′Then |C ′ | = |C|t ⩾ αt |V |t = αt |V ′ |, and C is a clique in G ′ .
Soundness: We show that if G does not contain a clique of size β |V |, then G ′ does not contain a clique

of size βt |V ′ |. Indeed, let C ′ be any clique in G ′, and defne for each i = 1, . . . , t the set � ′ Ci = v ∈ V | ∃(v1, . . . , vt) ∈ C such that vi = v .

In words, Ci is the set of all possible vertices that appear as the ith coordinate of some vertex in C ′ . Note
that Ci forms a clique in G; indeed, otherwise we would have v, u ∈ Ci that are not adjacent, and so we may
fnd (v1, . . . , vt) and (u1, . . . , ut) in C ′ such that vi = v and ui = u, and by defnition of the graph these
two vertices are not adjacent in G ′, in contradiction to the fact that C ′ forms a clique. Thus, |Ci| < β |V |.

To fnish the proof, note that C ′ ⊆ C1 × C2 × . . . × Ct, hence

t tY Y
t

C ′ ⩽ |Ci| < β |V | = βt V ′ .
i=1 i=1

From Theorem 2.1 we get the following immediate corollary.

Corollary 2.3. For all C > 1, approximating the maximum clique in a graph within factor C is NP-hard.

2.3 PCP and Hardness of Approximation

Corollary 2.3 is an amazing consequence of the theory of PCPs, and to date this is the only known approach
to proving hardness of approximation results for clique. In fact, almost all hardness of approximation results
use the theory of PCPs and start from Theorem 1.2.

At a high level, the proof of Corollary 2.3 proceeded via two steps. In the frst step we proved a weak
hardness of approximation result for clique (in the form of Theorem 2.1), and in the second step we amplifed
it into a strong hardness of approximation result. It turns out that replicating the frst step can be done for
a vast class of approximation problems, and these are often referred to as APX hardness results. These

4

type of results say that for many problems there exists some constant factor within which it is NP-hard to
approximate the optimum solution. Many of the combinatorial optimization problems that you know (such
as 3SAT, Vertex-Cover, Set-Cover, Max-Cut etc.) fall into this category, and are hence at least somewhat
hard to approximate.

Getting strong hardness of approximation results requires more efforts and more ideas. We were fairly
lucky in the case of clique, for which we could directly perform amplifcation. The situation is more com-
plicated though for other combinatorial optimization problems, which motivates the questions of if there are
stronger forms of the PCP theorem that imply strong hardness of approximation results.

3 Extreme Versions of the PCP Theorem

Inspecting Theorem 1.2, one may wonder what additional features of it would be of help when proving
hardness of approximation results. The above example of clique already highlights one important such
aspect regarding the soundness of the result, and more specifcally whether it could be taken to be close to 0.
Additionally, one may observe that if we wish to investigate super-constant factor approximations for clique
– say we want to show it is NP-hard to approximate within factor nε where n is the number of vertices in the
graph – we need the soundness to be related to the size of the instance.1 Lastly, and this will only become
more apparent once we see a few hardness of approximation results, one could hope that the structure of the
constraints Φe to be as restrictive and as simple as possible.

We summarize this discussion by stating a few aspects in which one may try to improve upon Theo-
rem 1.2, as well as some buzzwords that are related to them.

1. Hardness amplifcation. Are there forms of Theorem 1.2 with small soundness? Namely, is it true
that for every ε > 0, there is k ∈ N such that the problem gap-Label-Cover[1, ε] is NP-hard on
instances with alphabet size at most k? We will see that the answer to this question is positive, and
towards this end introduce a technique known as parallel repetition.

2. Sub-constant error PCPs. Are there forms of Theorem 1.2 in which the soundness is vanishing with
the instance size? How about forms of the theorem in which the soundness is polynomially small in
the instance size? Note that in such cases, the alphabet will also have to be of a size which is growing
with the instance size.

PCPs with sub-constant errors are known, and we have already seen some of the ideas that go into
constructing them (such as list-decoding in the plane versus point test), but proving it requires much
more effort. Getting sub-constant error PCPs with 2 queries is even harder, but it is known by now.
As for PCPs with polynomially small error, this is a well known open problem in the theory of PCPs
known as the sliding scale conjecture.

3. The simplicity of the constraints. Once we see several PCP reductions, you will see that on top on
needing small soundness, these reductions heavily use the fact we have projection constraints. It took
time to realize, but it turns out that the simpler the structure the constraints is, the more useful PCP
result one gets.

One of the most important examples for such structures are d-to-1 constraints, by which we mean
that not only is the map ϕe : ΣL → ΣR a projection map, but it is also “not very far” from being a

1In the case of clique such results are known while the corresponding forms of Theorem 1.2 are not, since there are ways to
work-around this issue.

5

permutation. In the extreme case of d = 1, one indeed wants each constraint ϕe to be a permutation
map; such PCPs are conjectured to exist but are not currently known. The statement that such PCPs
exists is a well-known conjecture in complexity theory that goes by the name the Unique-Games
Conjecture. For the case d = 2, one wants each constraint ϕe to be 2-to-1, namely that each σ2 ∈ ΣR

has two pre-images under ΣL. Such PCPs were conjectured to exist in the same paper introducing the
Unique-Games Conjecture, and by now it is known how to construct them.

In the rest of this course, we will mainly discuss points 1 and 3 above. In particular, starting from the
next lecture we will discuss the parallel repetition theorem, and long-code framework and how to use it to
prove some optimal hardness of approximation results. We will then discuss the Unique-Games Conjecture,
some of its consequences and recent developments regarding it.

6

MIT OpenCourseWare
https://ocw.mit.edu

18.408 Topics in Theoretical Computer Science: Probabilistically Checkable Proofs
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

	The Label Cover Problem
	The Basic PCP Theorem in the Language of Label Cover

	Hardness of Approximating the Maximum Clique
	The Basic Hardness of Approximation Result for Clique
	Hardness Amplification for Clique
	PCP and Hardness of Approximation

	Extreme Versions of the PCP Theorem

