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Dor Minzer 

In this lecture, we will present a transformation on PCPs called aggregation of queries. This technique 
enables one to achieve the block property which we used in the last few lectures in order to perform compo-
sition of PCPs. 

1 Aggregation of Queries 

Suppose that we have a PCP construction with s queries, namely that we know that gap-CSG[1, 1 − ε] is 
NP-hard on instances with s queries and alphabet Σ = {0, 1} (you should think of s as poly(log n)). We 
recall that an instance of this problem is an s-uniform hypergraph H = (V, E) along with a collection of 
constraints on the edges {Ce}e∈E . A constraint Ce is a collection of tuples (a1, . . . , as) ∈ Σs that are 
considered satisfactory, and the goal is to find an assignment A : V → Σ that satisfies as many of the 
constraints as possible, i.e. that maximizes 

|{e = (v1, . . . , vs) ∈ E | (A(v1), . . . , A(vs)) ∈ Ce}| . 

It is easy to see that all of the PCP constructions and tests we constructed in this course can be formalized 
in this way, and in particular the poly(log n) query PCP we constructed. 

The idea of aggregation of queries is to enlarge the set of vertices of the graph, so that for each edge 
e ∈ E, there will be a vertex ve in the graph whose label will encode together the labels of all of the vertices 
in e. Thus, verifying the constraint on e will only require us to read the label of ve. 

One simple way to do that is to consider the following construction: define the bi-partite graph G whose 
vertices are (V ∪ V 0, E0), where V is the original set of vertices of H and in V 0 we have a vertex ve for each 
edge e ∈ E. We connected v and ve by an edge if v is a vertex in the edge e in H . The alphabets of the 
CSG defined on G are Σ on V , and Σ2 on V 0 where for each ve we interpret a symbol from the alphabet as 
some tuple from Ce (i.e., as an assignment that satisfies e). The constraints on G are Φv,ve , and given the 
label σ of v and c of ce, we put (σ, c) in Φv,ve if c(v) = σ, i.e. of the label assigned to ve gives the variable 
v the value σ. This construction works with limited success, and you will see in the problem set that if H is 
satisfiable then G is satisfies, and if H is at most (1 − ε)-satisfiable, then G is at most (1 − ε/s)-satisfiable. 
Thus, if s is large (as in our case), this is not very good (but note that if s was constant, such transformation 
reduce the number of quires from s queries to 2 while maintaining the soundness bounded away from 1). 

The issue with this approach is that we need to more effectively enforce that the new witness locations 
packing the values assigned to all the vertices in v are globally consistent, in the sense that a vertex v 
appearing in two different edges would be assigned the same value by them. 

We resolve this issue by taking utilizing the idea of low-degree extensions and low-degree testing, again. 
In particular, we will think of the assignments to ve as projections of low-degree polynomials over a large 
space and perform low-degree extensions to ensure global consistency of all of these polynomials. 
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1.1 Packing Into Curves 
log nLet n = |V |, and identify V with Hm where H is a subset of a field Fq of size h = |H| = log n, m = ,log log n 

and the field size q is log100 n. Thus, we can identify an assignment A : V → {0, 1} with an assignment 
A : Hm → {0, 1}, and then consider its low-degree extension Aextension : Fm → {0, 1} which is multi-q 
variate polynomial of individual degree at most h. 

Our new CSG will contain, as part of it, locations for each entry of Aextension, and in particular we will 
want to design a test that ensures that a given table f of values is close to a truth table of a low-degree 
function. We have already seen how to solve this issue using the plane versus point encoding and the plane 
versus point test, so we may assume that f is close to a function of total degree at most mh. 

Next, we will want to pack all of the values of the assignment A that are given to an edge e ∈ E into a 
single table. Fix an edge e ∈ E, and let v1, . . . , vs ∈ Hm be all of vertices of H that are in e. We intend to 
pack v1, . . . , vq into a single curve, defined as follows: 

Definition 1.1. A curve γ : Fq → Fq
m is a tuple of univariate polynomials, i.e. γ(t) = (γ1(t), . . . , γm(t)). 

The degree of a curve γ is deg(γ) = maxi deg(γi). 

We have the following basic interpolation claim. 

Claim 1.2. Let a1, . . . , as ∈ Fq be distinct, and v1, . . . , vs ∈ Fm . Then there is a curve γ : Fq → Fq
s ofq 

degree at most s − 1 such that γ(ai) = vi for i = 1, . . . , s. 

Proof. By interpolation, for each j = 1, . . . ,m we may find a univariate polynomial γj : Fq → Fq of 
degree at most s − 1 such that γj (ai) = (vi)j for all i = 1, . . . , s. The proof is concluded by taking 
γ(t) = (γ1(t), . . . , γm(t)). 

For each edge e ∈ E given as e = (v1, . . . , vs) and an additional point x ∈ Fm , by Claim 1.2 we mayq 
pick a curve γe,x of degree at most s such that γe(i) = vi for i = 1, . . . , s and x = γe(s + 1). The idea 
is that the univariate function Aextension ◦ γe,x then is a polynomial of degree at most mhs = poly(log n), 
so to give all of the values of Aextension concerning the edge e at once we may simply give the restriction of 
Aextension to γe,x. As mhs is much smaller than q, our hope is that the properties of low-degree polynomials 
will enable us to ensure the global consistency. 

We next describe the “aggregation of queries” transformation more precisely. Our CSG will have nodes 
for each entry in the points table A0 and each entry in the planes table A2, which are supposed to encode 
Aextension. Also, for each edge e ∈ H and point x ∈ Fm

q our CSG will have mhs nodes specifying a 
univariate polynomial pe,x of degree at most mhs, which is supposed to be Aextension ◦ γe,x. We next 
describe the test: 

1. Perform the Plane versus Point test on A0 and A2. I.e. choose a point x ∈ Fm
q and a plane P 

containing it, and check that A0(x) = A2[P ](x). 

2. Choose e ∈ E an edge in H uniformly. 

3. Sample a point z ∈ Fm and read off the coefficients of pe,z to construct a univariate polynomial of q 
degree at most mhs. 

4. Take i ∈ Fq \ {1, . . . , s + 1} randomly, compute y = γe,z(i) and check that pe,z(i) = A0(y). 

5. Compute σi = pe,z(i) for each i = 1, . . . , s, and check that (σ1, . . . , σs) satisfy the constraint of e. 
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It is clear that the new PCP construction has size which is polynomial in the size of H , and that the run-time 
of the reduction is also polynomial. The following lemma addresses the completeness and soundness of the 
construction. 

Lemma 1.3. Denote by Ψ the CSG instance constructed above from H . 

1. If H is satisfiable, then Ψ is satisfiable. 

2. For all ε > 0, there is δ > 0 such that if H is at most (1 − ε)-satisfiable, then Ψ is at most (1 − δ)-
satisfiable. 

Proof. The first item is clear, since we can take a satisfying assignment A of H and assign the tables A0, A2 

truthfully according to the low-degree extension of A, and then assign the rest of the witness according to 
the coefficients of A ◦ γe,x for each e ∈ E and x ∈ Fm .q 

For the second item, we prove counter-positively that if there are tables A0, A2 and a table of coefficients 
that satisfy at least 1 − δ fraction of the constraints of Ψ, then there is an assignment to A satisfying more 
than 1 − ε of the constraints of H . 

To see that, first note that by the analysis of the Plane versus Point test that as A0(x) = A2[P ](x) with 
probability at least 1 − δ, it follows that there is a polynomial f : Fm → Fq of degree at most mhs such that q 

mhsPrx∈Fm
q 
[f(x) = A0(x)] > 1 − δ − 1/10 > 1 − 2δ, and we fix f henceforth. 

q √ 
By an averaging argument, for at least 1 − δ of the edges e ∈ E, the probability the test passes√ 

conditioned on choosing e is at least 1 − δ, and we show that A satisfies each such e. This would finish √ 
the proof as 1 − δ > 1 − ε. 

Fix e, and note that over the randomness of the choice of z, the distribution of γe,z(i) for each i ∈ 
Fq \ {1, . . . , s + 1} is uniform in Fm , so we get that A0(y) = f(y) with probability 1 − 2δ. Thus, we getq 
that 

Pr [f ◦ γe,z(i) = pe,z(i) ∧ rest of the test succeeds] > 1 − 3δ, 
z,i 

so there is some z such that Pri [f ◦ γe,z(i) = pe,z(i)] > 1 − 3δ. As f ◦ γe,z , and pe,z are univariate 
polynomials of degree at most mhs, it follows from the Schwarz-Zippel lemma that f ◦ γe,z ≡ pe,z , and 
from the test of the test we get that the values σi = pe,x(i) = f(γe,z(i)) = f(vi) for i = 1, . . . , s satisfy the 
constraint e. 

Therefore, defining A : Hm → {0, 1} by taking A(v) = f(v) if f(v) ∈ {0, 1} and arbitrarily otherwise, √ 
we get that A satisfies at least 1 − δ of the constraints, and we are done. 

1.2 The Block Property 

We finish the lecture by observing that the above transformation gave us the block property. Indeed, each 
symbol of the tables A0 and A2 will be its own block, and for each e ∈ E and x ∈ Fm we have a single block q 
containing all of the coefficients of pe,x. Note that these blocks are disjoint, and our tester looked at 4 blocks. 
We also note that the total number of queries made is O(mhs), therefore we only incurred a polynomial 
blow-up in the query complexity while keeping the soundness bounded away from 1 and achieving the block 
property. Summarizing, in the main features of the aggregation of queries that we used are: 

1. Soundness and completeness: the transformation keeps perfect completeness, and if the original 
soundness was bounded away from 1, then the soundness after the transformation is still bounded 
away from 1. 
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2. Query complexity: if the original query complexity was s, then the new query complexity will be 
0s = spoly(log n). Thus, in the case that s was poly-logarithmic to begin with, we only incur a 

polynomial blow-up in the query complexity. 

3. The block property: the new CSG instance has the (k, s0) block property for k = 4. 

2 Some More Words on Composition 

One way to think of the aggregation of queries technique is that it reduces us to checking that some univariate 
polynomial pe,x satisfies some constraint (in the case above, that the values pe,x(1), . . . , pe,x(s) satisfy some 
constraint Ce), and that we managed to ensure global consistency using the low-degree test and the tables 
A0, A2. 

Thus, we have effectively reduced our original problem to a similar looking problem of smaller scale: 
we want to verify that the values of assignment g : X 0 → {0, 1} (which you can think of as encoding 
the coefficients of pe,x) satisfies some constraint Ce. The main differences are (1) the domain X 0 is of 

0much smaller size, and more specifically n = poly(log n), and (2) we need to check that the values of 
the assignment g are consistent with A0. In light of (1), one may expect that we should be able to run the 
algebraic PCP construction restricted to the domain X 0 , namely re-interpreting that as quadratic equations, 
running the sum-check protocol and using the low-degree test again to further reduce the number of queries 
from n0 to poly(log n0) = poly(log log n) time. 

This is indeed possible, thankfully to the block property, in a similar manner to the composition step we 
did with the Hadamard code. Drawing further analogies, point (2) above is analogous to the fact we needed 
to check that our Hadamard encodings satisfy some quadratic equation, and indeed it can be achieved by our 
algebraic PCP. The details of this construction though get rather hairy and hence are omitted, but by now 
you have all of the tools and ideas necessary to prove the PCP theorem from scratch. 
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