
18.408 Topics in Theoretical Computer Science Fall 2022 
Lectures 10,11 

Dor Minzer 

In previous lectures we have proved a PCP theorem with poly-logarithmic number of queries; namely 
that gap-CSG[1, 1/ log(n)c] is NP-hard on instances with alphabet size and number of queries that are both 
poly(log n), where n is the size of the instance. As hinted earlier, there is a way to “recurse” and by that 
to take the number of queries further down to be doubly logarithmic and even triply logarithmic. How does 
one eventually achieve a PCP with constant number of queries, though? Today, we will assume a stronger 
(but similar) version of the result we have already proved, and use it to construct a PCP with constantly 
many queries. 

1 Overview 

Our starting point today will be the following PCP construction. 

Theorem 1.1 (PCP with poly-loglog number of queries). There are absolute constants ε, C > 0 such 
that gap-QS[1, 1 − ε] is NP-hard on instances with alphabet size O(1) and number of queries at most 
(log log(n))C . 

This theorem differs from the result we proved over the last few lectures in several aspects. First, the 
alphabet size here is O(1) instead of poly-logarithmic; this is not a signifcant difference, since we can 
represent a single alphabet symbol by poly(log log n) many bits, thus decrease the alphabet size at the 
expense of increasing the number of queries by that factor. Secondly, in the last lecture we only achieved 
poly-logarithmic number of queries, and here we are assuming poly(log log n) number of queries; this 
difference is more signifcant, and we will discuss it at a later point. Third, the soundness of our PCP is 
1 − ε (i.e. close to 1) as opposed to close to 0. In this aspect, the result we are using here is weaker than 
the one we have proved. We are doing it so as to simplify the presentation, as working in regime in which 
the soundness bounded away from 1 is easier than working in the regime the soundness is close to 0. It is 
possible though to modify the ideas presented herein and establish a result with soundness close to 0. 

We will use Theorem 1.1 to prove: 

Theorem 1.2 (PCP with a constant number of queries). There is an absolute constant ε > 0 such that 
gap-CSG[1, 1 − ε] is NP-hard on instances with alphabet size O(1) and number of queries O(1). 

Towards this end, we will frst introduce a construction that doesn’t work but will be helpful for us in 
conveying some of the ideas that go into the proof. We will then identify an additional structural prop-
erty that we could hope to get from the instances from Theorem 1.1, and then modify our construction so 
that it is indeed correct assuming this additional property. We will discuss this additional property and a 
transformation that allows us to guarantee it in subsequent lectures. 
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2 Hadamard and Quadratic Hadamard Codes 

Suppose we have an instance (X, E) of quadratic solvability as in Theorem 1.1; thus, we have variables 
x1, . . . , xn that are to be assigned values from Fq, and equations e1, . . . , em each containing at most s = 
poly(log log n) many variables. We know that in the YES case, there is an assignment A : X → Fq satisfying 
all equations, and in the NO case each assignment A satisfes at most δ = 1/ log(n)c of the equations. We 
want to encode the assignment A in a different way, so that by making O(1) queries into the encoding we 
can check whether the encoded A satisfes ei, and for that we are going to use the quadratic Hadamard code 
that you have already seen in the problem set. 

2.1 The Hadamard Code 

Recall that the Hadamard code over Fq is defned as follows: 

Defnition 2.1. For v ∈ Fs , we defne the Hadamard Encoding of v as the truth table of the functionq 
hv : Fs

q → Fq defned by 
hv(y) = ⟨v, y⟩ . 

In words, for each vector v ∈ Fs
q we consider the linear function hv(y) = ⟨v, y⟩, and the truth table of 

hv is the Hadamard encoding of the vector v. It is easy to prove that the Hadamard code is a linear error 
correcting code and has relative distance 1 − 1/q. Note that if we wish to encode a vector of length s, then 
the length of the encoding of v is qs, i.e. exponential in s. Thus, we can afford to use such encodings only if 
qs is at most polynomially large in n, which is the reason we would like to apply the Hadamard code only to 
encode strings of length at most s = O(log n); in our case, the strings will be of length s = poly(log log n). 

The Hadamard code is locally testable. Indeed, note that if hv is a legitimate Hadamard codeword, then 
hv(x + y) = hv(x) + hv(y), which suggests the following randomized local test for the Hadamard. Given 
a table of values f : Fs → Fq which is supposed to be an Hadamard encoding of some vector v, perform the q 
following test, which we call the linearity test: 

1. Pick x, y ∈ Fs uniformly. q 

2. Query f(x), f(y) and f(x + y). 

3. Accept if f(x + y) = f(x) + f(y). 

The following lemma asserts that correctness of the test: 

Lemma 2.2. Suppose that f : Fs → Fq passes the linearity test with probability at least 1 − ε for ε < 1/8.q 
Then, there exists v ∈ Fs

q, such that 

Pr [f(x) = hv(x)] ⩾ 1 − 2ε. 
x∈Fs

q 

Proof. The proof is identical to the proof shown earlier in the course for q = 2. One defnes 

g(x) = majorityy∈Fs
q 
f(x + y) − f(y) 

and shows that Prx∈Fs
q
[f(x) = g(x)] ⩾ 1 − 2ε, and that provided that ε < 1/8, g passes the linearity test 

with probability 1, in which case g can easily be seen to be a Hadamard codeword. 
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The last important feature of the Hadamard code is that it enables us to verify linear constraints on the 
encoded vector v. Indeed, suppose we had some vector of coeffcients α1, . . . , αs and we want to test that 
sP 
αivi = c. How can we do it using the Hadamard encoding of v? 

i=1 
Well, if we have the legitimate Hadamard encoding of v, namely hv, the above constraint can simply be 

re-written as hv(α⃗ ) = c where α⃗ = (α1, . . . , αs). In our situation though, we will have oracle access to a 
table f : Fs → Fq that we can only guarantee to be close to a table of a legitimate Hadamard codeword hv.q 
Thus, it could be the case that the input α⃗ just happens to be one of the inputs in which f and hv differ. Can 
we verify the linear constraint on v despite of that? 

Instead of directly asking for the value of f at α⃗ , we can use self correction! Namely, we can sample 
x ∈ Fs

q uniformly, and then observe that each one of the inputs x and x + α⃗ is distributed uniformly on 
Fs , hence we expect f and hv to agree on them. Then, we can read off f(x) and f(x + α⃗ ), and check that q 
f(x+ α⃗ )−f(x) = c. The idea is that with high probability over x, f(x+ α⃗ )−f(x) = hv(x+ α⃗ )−hv(x) = 
hv(α⃗ ), hence this test will pass only if v satisfes the linear constraint. 

Summarizing, we state the following tester for the Hadamard codeword which enables us to check 
whether a given table f is close to a Hadamard codeword, and if the nearby codeword satisfes a given linear 
constraint. The input to the test is an oracle access to f : Fs → Fq, as well as a vector of coeffcients α⃗ ∈ Fs 

q q 
and c ∈ Fq, and we want to test if f is close to some Hadamard codeword hv α, v⟩ = c.that satisfes that ⟨⃗ 

1. Sample x, y ∈ Fs uniformly and check that f(x + y) = f(x) + f(y).q 

2. Query f(x + α⃗ ) and check that f(x + α⃗ ) − f(x) = c. 

We summarize the above discussion with the following lemma. 

Lemma 2.3. Suppose f : Fs → Fq, α⃗ and c are such that the above test accepts with probability at least q 
1 − ε, for ε < 1/8. Then there exists v ∈ Fs such that q 

1. v satisfes the linear constraint: ⟨α⃗, v⟩ = c. 

2. f is close to hv: Prx∈Fq
s [f(x) = hv(x)] ⩾ 1 − 2ε. 

Proof. Left to the reader. 

Thus, the Hadamard code only incurs an exponential blow-up in the size of the encoding, and it allows 
us to check linear constraints in the encoded values. This almost fts what we need in order to go from 
Theorem 1.1 to Theorem 1.2, except that there we need to be able to check quadratic constraints in the 
encoded values. In the next section we show a variant of the Hadamard code which enables us to do that. 

Remark 2.4. A few remarks are in order. 

1. Notice that while the linearity tester required only 3 queries, in order to check a linear constraint 
we required an additional query. There are ways to incorporate the linear constraint check into the 
linearity tester so that to keep the number of queries to be 3; this is not very important for us now as 
this difference will be minor, but there are some applications in which such ideas are crucial. 

2. As discussed, there are analogs the above ideas and in particular of Lemma 2.2, in the low-soundness 
regime. Roughly speaking, such results are concerned with the case the feld size q is though of 
as somewhat large, and consider the case that f passes the linearity test with probability at least 
1/q + ε. In such cases, one proves a list decoding statement, saying that there is a list v1, . . . , vk 
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where k = k(ε) ∈ N that “explains” all of the success probability of the test. Namely, the probability 
that f(x + y) = f(x) + f(y) but f disagrees with each one of hvi on at least one of {x, y, x + y} is 
very small. Incorporating the linearity checks requires more effort. 

2.2 The Quadratic Hadamard Code 

The quadratic Hadamard code is defned as: 

Defnition 2.5. For v ∈ Fs , we defne the quadratic Hadamard encoding of v as the truth table of theq 

function Qhv : Fs2 → Fq defned by q 

Qhv(y) = hv⊗v(y) = ⟨v ⊗ v, y⟩ , 

where v ⊗ v ∈ Fs2 
is the vector whose i, j entry is vivj .q 

One way to think about the quadratic Hadamard code is that it is a subset of the Hadamard code of 
2vectors of length s , corresponding only to vectors of the form v ⊗ v. We will want to show that we can 

still locally test the quadratic Hadamard code, and that it enables us to verify quadratic constraints in v. 
sWe also remark that as the size of the encoding of a string of√length s is q 
2 
, we will want to use the 

Hadamard encoding only on strings whose length is at most O( log n), and for us it will be the case that 
s = poly(log log n). 

Suppose we have oracle access to a functions f : Fs → Fq and Qf : Fs2 → Fq which are supposed to q q 
be the Hadamard and the quadratic Hadamard encoding of some v ∈ Fs . Suppose, in addition, we have aqP 
quadratic constraint αi,j vivj = c on the v’s. How can we test that f and Qf are indeed such functions, 

i,j 
and that v satisfes the quadratic constraint? 

By the previous discussion, we can already perform a test to guarantee that f and Qf are close to 
Hadamard codewords of some vectors. Indeed, our tester begins by: 

1. Run the linearity tester on f : namely, sample x, y ∈ Fs check that f(x + y) = f(x) + f(y), elseq 
reject. 

∈ Fs2 ′ ), ′ ′ ′2. Run the linearity tester on f : namely, sample x , y check that Qf(x +y ′ ) = Qf(x ′ )+Qf(yq 
else reject. 

By Lemma 2.2, if f and Qf pass this test with probability at least 1 − ε where ε < 1/8, then there are 
v ∈ Fs and u ∈ Fs2 

such that f is 2ε-close to hv and qf is 2ε-close to hu. Next, we would like to test that q q 
u = v ⊗ v, and for that we begin with the basic observation that 

hv⊗v(x ⊗ y) = ⟨v ⊗ v, x ⊗ y⟩ = ⟨v, x⟩ ⟨v, y⟩ = hv(x)hv(y), 

hence we get a potential connection that we should test. Namely, this suggests test to test that u = v ⊗ v, 
we would like to check that hu(x ⊗ y) = hv(x)hv(y), and we will indeed do that. There is one catch: the 
vector x ⊗ y is not uniformly distributed over Fs2 

, so if we attempt to access the value of hu on it by directly q 
querying Qf on that point, it may be the case that this is a location in which hu and Qf differ. To overcome 
this, we use local correction again, and get the tensor tester: 

1. Sample x, y ∈ Fs and z ∈ Fs2 
uniformly. q q 

2. Check that Qf(z + x ⊗ y) − Qf(z) = f(x)f(y), else reject. 
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We have the following lemma. 

Lemma 2.6. Suppose that f : Fs → Fq and Qf : Fs2 → Fq are functions that succeed with probability at q q 
1least 1 − ε in the linearity tester and the tensor tester, and ε ⩽ 100 . Then there is v ∈ Fs such that f is 2εq 

close to hv, and Qf is 2ε close to hv⊗v. 

Proof. From Lemma 2.2 there are v ∈ Fs and u ∈ Fs2 
such that f is 2ε-close to hv and Qf is 2ε-close to q q 

hu. Note that with probability at least 1 − 8ε it holds that Qf(z + x ⊗ y) = hu(z + x ⊗ y), Qf(z) = hu(z), 
f(x) = hv(x), f(y) = hv(y), so 

Pr [hv(x)hv(y) = hu(x ⊗ y)] ⩾ 1 − 9ε. 
x,y∈Fs 

q 

However, note that if u ̸= v ⊗ v, then the functions P (x, y) = hv(x)hv(y) and Q(x, y) = hu(x ⊗ y) 
are distinct functions over F2s of individual degree 1 and total degree 2, hence by Schwarz-Zippel they q 

disagree on randomly chosen x, y with probability at least (1 − 1/q)2 > 9ε. It follows that we must have 
that u = v ⊗ v. 

Recall that in the last section, we saw that if we have oracle access to a table g that is close to a Hadamard 
function hu, then we can check linear equations in u. In our situation, we have access to a table Qf that 
is close to a Hadamard function hv⊗v, hence we can check linear equations in v ⊗ v, which are simply 
quadratic equations in v. Thus, we reach our fnal tester. The tester gets oracle access to tables f : Fs → Fqq 

and Qf : Fs2 
as well as a vector of coeffcients α⃗ ∈ Fs2 

and c ∈ Fq; the tester needs to verify that for someq q 
v ∈ Fs

q, f is close to hv, Qf is close to hv⊗v α, v ⊗ v⟩ = c.and that ⟨⃗ 

1. Run the linearity tester on f and Qf : 

′ ′(a) Sample x, y ∈ Fs and x , y ∈ Fs2 
uniformly. q q 

′(b) Check that f(x + y) = f(x) + f(y) and Qf(x + y ′ ) = Qf(x ′ ) + Qf(y ′ ), else reject. 

2. Run the tensor tester: 

(a) Sample x, y ∈ Fs and z ∈ Fs2 
uniformly. q q 

(b) Check that Qf(z + x ⊗ y) − Qf(z) = f(x)f(y), else reject. 

3. Run the self-correction constraint tester: 

(a) Sample x ∈ Fs2 
uniformly. q 

(b) Check that Qf(x + α⃗ ) − Qf(x) = c, else reject. 

The following lemma summarizes the properties of the above tester. 

Lemma 2.7. Suppose that f : Fs → Fq and Qf : Fs2 → Fq are functions that succeed with probability at q q 
1least 1 − ε in the linearity + tensor + constraint tester, and ε ⩽ 100 . Then there is v ∈ Fs such that f is 2εq 

close to hv, and Qf is 2ε close to hv⊗v, and ⟨α⃗, v ⊗ v⟩ = c. 

Proof. From Lemma 2.6 it follows that f and qf are 2ε-close to hv and hv⊗v for some v ∈ Fs , hence with q 
probability at least 1 − 5ε > 0 over x, 

c = Qf(x + α⃗ ) − Qf(x) = hv⊗v α) − hv⊗v(x) = ⟨⃗(x + ⃗ α, v ⊗ v⟩ , 

so v satisfes the quadratic constraint. 
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3 Going from Theorem 1.1 to Theorem 1.2 via the Quadratic Hadamard 
Code? 

3.1 Composing with the Hadamard Code 

The ideas presented in the lecture so far suggest the following way of deducing Theorem 1.2 from Theo-
rem 1.1. Start with an instance of quadratic equations (X, E) as in Theorem 1.1, let q = O(1) be the feld 
size, and write X = {x1, . . . , xn}, E = {e1, . . . , em}. For each equation ei, consider the set of variables 
Xi ⊆ X that appear in it, and use the Hadamard and quadratic Hadamard encodings to encode the (sup-
posed) assignment A : X → Fq on these variables. For convenience, instead of thinking of the supposed A 
as an assignment, we think of it as a vector ⃗v ∈ FX

q . 
iNamely, our witness will be a collection of assignments fi : FXi → Fq, Qfi : F

X2 

→ Fq, and ourq q 

intention is that fi, Qf i are the Hadamard and quadratic Hadamard encodings of v⃗|Xi . Thus, we think of 
the nodes of our CSG as the locations of the tables of these functions, and we use the tester above to defne 
a set of constraints in order to verify it: 

1. Sample i ∈ {1, . . . ,m}. 

2. Run the linearity tester on fi, Qfi. 

3. Run the tensor tester on fi, Qfi 

4. Run the self-correction constraint tester on fi, Qfi to check the equation ei. Namely, write ei as 
⟨αi, v|Xi ⟩ = ci, and run the self-correction constraint tester on fi, Qfi with αi and ci. 

maxi|Xi|2We note that the run-time of the reduction is O(m · q ), which is polynomial in n (this is the reason 
that we needed to go down to polyloglog many queries). We also note that overall, each constraint only 
looks at O(1) locations. 

Using Lemma 2.7, one can analyze this PCP construction and show (roughly speaking) that for suff-
ciently small δ > 0, if {fi, Qfi}i=1,...,m pass this test with probability at least 1 − δ, then one can fnd 
a collection of vectors vi ∈ FXi such that fi, Qfi are 2δ-close to the Hadamard and quadratic Hadamard q 
encodings of vi, and that vi satisfes the equation ei. This seems good, except that there is one issue: how 
do we make sure that the vectors vi are consistent? Namely, suppose we had some variable x which is both 
in Xi as well as in Xj ; how do we make sure that it receives the same value in both vi and vj ? 

To address that, one may try to use the Hadamard and quadratic Hadamard encodings to encode the 
entire vector v⃗; this works but then the runtime of the reduction is 2θ(n

2) (and for this, one doesn’t need 
much of what we’ve done in the course thus far). To remedy the situation we need our initial quadratic 
solvability instance to have the block property. 

3.2 The Block Property 

We need more structure from the PCP given to us in Theorem 1.1, and the specifc structure we look for is 
called the block property. This additional feature can be guaranteed by a technique we have yet to see called 
“aggregation of queries”, and we defer the discussion on how to achieve it to a later point. 

Roughly speaking, the block property addresses the structure of the queries the PCP makes (in this case, 
the structure of the variables xi’s that an equation depends on), and says that while the total number of these 
variables can be quite large (poly-logarithmic or doubly logarithmic), they can be read by looking into only 
much fewer number of “blocks” in the witness (typically constantly many). 
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Below, we specialize the discussion to quadratic equations, but the defnition easily extends to general 
constraint satisfaction graph problems. We say an instance (X, E) of quadratic equations has the (k, s)-
block property if the set of variables X can be partitioned into disjoint sets X1 ∪ . . . ∪ Xn ′ such that 
|Xi| ⩽ s for each i, each one of the equations ej contains variables from most k of the blocks Xi and the 
variables of each monomial in ej appear in the same block. Furthermore, this partition is given as part of 
the input. We remark that in this defnition, k should be thought of as a constant, say 10, and s should be 
thought of as small but super constant, say poly(log log n). 

With this defnition in mind, we now state the variant of Theorem 1.1 that we will use: 

Theorem 3.1 (PCP with poly-loglog number of queries). There are absolute constants ε, C > 0 and k ∈ N 
such that gap-QS[1, 1 − ε] is NP-hard on instances with alphabet size O(1) satisfying the (k, s)-block 
property for s = poly(log log n). 

We now prove Theorem 1.2 using Theorem 3.1, and the idea similar to the one from the previous section. 
Let (X, E) be an instance of quadratic solvability as in Theorem 3.1, and let X1 ∪ . . . ∪ Xn ′ be a partition 

′of X into blocks as in the (k, s)-block property. For each i = 1, . . . , n , we have a pair of functions 

fi : FXi 
q → Fq and Qfi : F

X
q 

2 
i → Fq. The intention is that if v ∈ FX 

q is a vector representing a solution to 
(X, E), then fi, Qfi will be the Hadamard and the quadratic Hadamard encodings of v|Xi . 

The locations of the tables fi, Qfi together constitute the vertices of the CSG we construct Ψ, and we 
next describe the constraints of Ψ. 

We sample an equation j ∈ {1, . . . ,m} and take the blocks i1, . . . , ik that equation ej depends on. We 
perform the linearity and tensor testers on fi, Qfi for each i ∈ {i1, . . . , ik}; then, thinking of the equation ej 

|α= 2j Xi 

and use local correction to “read off” Qfi(αj,i), and check that these values add up to cj . More precisely: 
as ⟨αj , v ⊗ v⟩ = cj , we set αj,i , i.e. the coeffcients of α that are associated with monomials in Xi, 

i 

1. Sample j ∈ {1, . . . ,m}, and let i1, . . . , ik be the k-blocks the equation ej ∈ E depends on. Let αj 

be its vector of coeffcients. 

2. Run the linearity tester on fi, Qfi for all i ∈ {i1, . . . , ik}. 

3. Run the tensor tester on fi, Qfi for all i ∈ {i1, . . . , ik}. 

4. Run the self-correction constraint tester on fi, Qfi for all i ∈ {i1, . . . , ik} to “read off” Qfi(αj,i). 

, select x ∈ FX2 

randomly and take ai 
i

Namely, for each i ∈ {1, . . . , ik} let αj,i = αj |X2 

αj,i) − Qfi(x). P 
5. Check that ai = cj . 

i∈{i1,...,ik} 

We note that the total number of queries made in the above test is 3k + 4k + 2k = O(k) = O(1), so we 
have our desired number of queries. It is also clear that the reduction is polynomial time. 

The following lemma shows the correctness of the reduction, thereby fnishing the proof of Theorem 1.2. 

Lemma 3.2. Let (X, E) be a quadratic solvability instance satisfying the (k, s)-block property, and con-
sider the constraint satisfaction graph problem Ψ constructed above. Then for all ε > 0 there is δ = 
δ(k, ε) > 0 such that the following holds: 

1. If (X, E) is fully satisfable, then Ψ is fully satisfable. 

2. If (X, E) is at most (1 − ε)-satisfable, then Ψ is at most (1 − δ)-satisfable. 

q = Qfi(x + 

7 



Proof. For the frst item, if (X, E) is satisfable, then we take a satisfying assignment v ∈ FX and set fi, Qfiq 
to be the Hadamard and quadratic Hadamard encoding of v|Xi for all i; then the above tester passes with 
probability 1. � � 

For the second item, we choose δ = min ε2 1 and assume counter-positively that there are100 , (2k+1)2 

fi, Qfi that pass this test with probability at least 1 − δ. We show how to construct an assignment to (X, E)√ 
that satisfes at least 1 − δ > 1 − ε of the equations, and contradiction. 

For each i = 1, . . . , k, consider fi and choose vi ∈ FXi such that the function hvi is closest to fi amongq 
all functions of the form hv (if there are ties, break them arbitrarily). Thus, we have the vectors v1, . . . , vk, 
and using them we can defne an assignment A : X → Fq where A(x) = vi(x) if x ∈ Xi; note that this is 
well defned since the Xi’s are disjoint. In the rest of the argument, we show that the assignment A satisfes√ 
at least 1 − δ of the equations of (X, E). √ 

By an averaging argument, for at least 1 − δ fraction of the j’s, once we fx j the test passes with √ 
probability at least 1 − δ, and we show that A satisfes ej for each such j. Indeed, fx such j; then we get√ 
that as the linearity tester+tensor tester pass on each one of i = i1, . . . , ik with probability at least 1 − δ,√ √ 
Lemma 2.6 implies there is ui such that fi is 2 δ-close to hui and Qfi is 2 δ-close to hui⊗ui . 

By the choice of vi as we must have that vi = ui. Indeed, otherwise as hvi is (1 − 1/q)-far from hui , it √ √ 
is at least 1 − 1/q − 2 δ > 2 δ far from fi in contradiction to it being the closest. √ 

Thus, with probability at least 1 − 2k δ we have that Qfi(x + αj,i) = hvi⊗vi (x + αj,i) and Qfi(x) = √ 
hvi⊗vi (x) for all i in the last step, so with probability at least 1 − (2k + 1) δ we get the ai’s there sum up 
to cj and 

ai = Qfi(x + αj,i) − Qfi(x) = hvi⊗vi (x + αj,i) − hvi⊗vi (x) = hvi⊗vi (αj,i). √ 
Summing over i gives that with probability at least 1 − (2k + 1) δ > 0 we have X X 

cj = ai = ai = hvi⊗vi (αj,i), 
i∈{i1,...,ik} i∈{i1,...,ik} 

implying that A satisfes the equation ej . 

4 The Composition Technique 

The idea we presented here is an instantiation of a technique called composition, which is analogous to 
composition (concatenation) of error correcting codes. We started with a PCP with relatively large number 
of queries, which will be referred to as the “outer PCP” and composed it with a PCP with much fewer 
queries which will be referred to as the “inner PCP”. In our case, the outer PCP was the PCP construction 
from Theorem 3.1, and inner PCP was the ineffcient PCP that can be constructed using the Hadamard code. 
For our overall construction to be effcient though, we made sure to use the inner PCP only on small enough 
pieces, and the main gain is that the number of queries is basically inherited from the inner PCP. 

At a high level, our composed PCP construction wanted to check that some constraint in the outer PCP 
was satisfed (a quadratic equation), and to do that we needed to “push down” this check to the language of 
the inner PCP (in our case, the quadratic Hadamard code enables us to check quadratic equations). 

Composition of PCPs is one of the most important ideas in PCP theory; for example, going from the 
poly(log n)-query PCP theorem we have already proved to Theorem 1.1 amounts to composing PCPs too; 
in that case, it is a composition of the algebraic PCP (i.e. the one constructed via sum-check and low-degree 
testing) with itself. 

As seen here, to facilitate composition one needs to have the block property, and in the next lecture we 
will discuss the aggregation of queries technique that achieves that. 
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