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Structure of Set Addition

Chapter Highlights

• Freiman’s theorem: structure of sets with small doubling
• Inequalities between sizes of sumsets: Ruzsa triangle inequality and Plünnecke’s inequality
• Ruzsa covering lemma
• Freiman homomorphisms: preserving partial additive structure
• Ruzsa modeling lemma
• Structure in iterated sumsets: Bogolyubov’s lemma
• Geometry of numbers: Minkowski’s second theorem
• Polynomial Freiman–Ruzsa conjecture
• Additive energy and the Balog–Szemerédi–Gowers theorem

Let 𝐴 and 𝐵 be finite subsets of some ambient abelian group. We define their sumset to
be

𝑨 + 𝑩 B {𝑎 + 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} .
Note that we view 𝐴 + 𝐵 as a set, and do not keep track of the number of ways that each
element can be written as 𝑎 + 𝑏.

The main goal of this chapter is to understand the following question.

Question 7.0.1 (Sets with small doubling)
What can we say about 𝐴 if 𝐴 + 𝐴 is small?

We will prove Freiman’s theorem, which is a deep and foundational result in additive
combinatorics. Freiman’s theorem tells us that, if 𝐴 + 𝐴 is at most a constant factor larger
than 𝐴, then 𝐴 must be a large fraction of some generalized arithmetic progression.

Most of this chapter will be devoted toward proving Freiman’s theorem. We will see ideas
and tools from Fourier analysis, geometry of numbers, and additive combinatorics.

In Section 7.13, we will introduce the additive energy of a set, which is another way to
measure the additive structure of a set. We will see the Balog–Szemerédi–Gowers theorem,
which relates additive energy and doubling. This section can be read independently from the
earlier parts of the chapter.

These results on the structure of set addition are not only interesting on their own, but also
play a key role in Gowers’ proof (2001) of Szemerédi’s theorem (although we do not cover it
in this book; see Further Reading at the end of the chapter). Gowers’ deep and foundational
work shows how these topics in additive combinatorics are all highly connected.
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238 Structure of Set Addition

Definition 7.0.2 (Sumset notation)
Given a positive integer 𝑘 , we define the iterated sumset

𝒌𝑨 B 𝐴 + · · · + 𝐴 (𝑘 times).

This is different from dilating a set, which is denoted by

𝝀 · 𝑨 B {𝜆𝑎 : 𝑎 ∈ 𝐴} .
We also consider the difference set

𝑨 − 𝑩 = {𝑎 − 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} .

7.1 Sets of Small Doubling: Freiman’s Theorem
How small or large can 𝐴 + 𝐴 be, given |𝐴|? This is an easy question to answer.

Proposition 7.1.1 (Easy bounds on sumset size)
Let 𝐴 ⊆ Z be a finite set. Then

2 |𝐴| − 1 ≤ |𝐴 + 𝐴| ≤
(|𝐴| + 1

2

)
.

Furthermore, both bounds are best possible as functions of |𝐴|.

Proof. Let 𝑛 = |𝐴|. For the lower bound |𝐴 + 𝐴| ≥ 2𝑛 − 1, note that if the elements of 𝐴 are
𝑎1 < 𝑎2 < · · · < 𝑎𝑛, then

𝑎1 + 𝑎1 < 𝑎1 + 𝑎2 < · · · < 𝑎1 + 𝑎𝑛 < 𝑎2 + 𝑎𝑛 < · · · < 𝑎𝑛 + 𝑎𝑛
are 2𝑛 − 1 distinct elements of 𝐴 + 𝐴. So |𝐴 + 𝐴| ≥ 2𝑛 − 1. Equality is attained when 𝐴 is an
arithmetic progression.

The upper bound |𝐴 + 𝐴| ≤ (𝑛+1
2
)

follows from that there are
(𝑛+1

2
)

unordered pairs of
elements of 𝐴. We have equality when there are no nontrivial solutions to 𝑎 + 𝑏 = 𝑐 + 𝑑 in
𝐴, such as when 𝐴 consists of powers of twos. □

Exercise 7.1.2 (Sumsets in abelian groups). Show that if 𝐴 is a finite subset of an abelian
group, then |𝐴 + 𝐴| ≥ |𝐴|, with equality if and only if 𝐴 is the coset of some subgroup.

What can we say about 𝐴 if 𝐴 + 𝐴 is not too much larger than 𝐴?

Definition 7.1.3 (Doubling constant)
The doubling constant of a finite subset 𝐴 in an abelian group is the ratio |𝐴 + 𝐴|/|𝐴|.

One of the main results of this chapter, Freiman’s theorem, addresses the following ques-
tion.

Question 7.1.4 (Sets of small doubling)
What is the structure of a set with bounded doubling constant (e.g. |𝐴 + 𝐴| ≤ 100 |𝐴|)?

We’ve already seen an example of such a set in Z, namely arithmetic progressions.
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7.1 Sets of Small Doubling: Freiman’s Theorem 239

Example 7.1.5. If 𝐴 ⊆ Z is a finite arithmetic progression, |𝐴 + 𝐴| = 2 |𝐴| − 1 ≤ 2 |𝐴|, so
it has doubling constant at most 2.

Moreover if we delete some elements of an arithmetic progression, it should still have
small doubling. In fact, if we delete even most of the elements of an arithmetic progression
but leave a constant fraction of the progression remaining, we will have small doubling.

Example 7.1.6. If 𝐵 is a finite arithmetic progression and 𝐴 ⊆ 𝐵 has |𝐴| ≥ |𝐵| /𝐾 , then
|𝐴 + 𝐴| ≤ |𝐵 + 𝐵 | ≤ 2 |𝐵| ≤ 2𝐾 |𝐴|, so 𝐴 has doubling constant at most 2𝐾 .

Now we generalize arithmetic progressions to allow multiple dimensions. Informally, we
consider affine images of 𝑑-dimensional “grids,” as illustrated below.

Z2

−→

Z

Definition 7.1.7 (GAP – generalized arithmetic progression)
A generalized arithmetic progression (GAP) in an abelian group Γ is defined to be an
affine map

𝜙 : [𝐿1] × · · · × [𝐿𝑑] → Γ.

That is, for some 𝑎0, . . . , 𝑎𝑑 ∈ Γ,

𝜙(𝑥1, . . . , 𝑥𝑑) = 𝑎0 + 𝑎1𝑥1 + · · · + 𝑎𝑑𝑥𝑑 .
This GAP has dimension 𝑑 and volume 𝐿1 · · · 𝐿𝑑 . We say that this GAP is proper if 𝜙 is
injective.

We often abuse notation and use the term GAP to refer to the image of 𝜙, viewed as a set:

𝑎0 + 𝑎1 · [𝐿1] + · · · + 𝑎𝑑 · [𝐿𝑑] = {𝑎0 + 𝑎1𝑥1 + · · · + 𝑎𝑑𝑥𝑑 : 𝑥1 ∈ [𝐿1], . . . , 𝑥𝑑 ∈ [𝐿𝑑]} .
Example 7.1.8. A proper GAP of dimension 𝑑 has doubling constant ≤ 2𝑑 .

Example 7.1.9. Let 𝑃 be a proper GAP of dimension 𝑑. Let 𝐴 ⊆ 𝑃 with |𝐴| ≥ |𝑃 | /𝐾 . Then
𝐴 has doubling constant ≤ 𝐾2𝑑 .

While it is often easy to check that certain sets have small doubling, the inverse problem
is much more difficult. We would like to characterize all sets with small doubling. The
following foundational result by Freiman (1973) shows that all sets with bounded doubling
must look like Example 7.1.9.

Theorem 7.1.10 (Freiman’s theorem)
Let 𝐴 ⊆ Z be a finite set satisfying |𝐴 + 𝐴| ≤ 𝐾 |𝐴|. Then 𝐴 is contained in a GAP
of dimension at most 𝑑 (𝐾) and volume at most 𝑓 (𝐾) |𝐴|, where 𝑑 (𝐾) and 𝑓 (𝐾) are
constants depending only on 𝐾 .

Freiman’s theorem is a deep result. We will spend most the chapter proving it.
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240 Structure of Set Addition

Remark 7.1.11 (Quantitative bounds). We will present a proof giving 𝑑 (𝐾) = exp(𝐾𝑂 (1) )
and 𝑓 (𝐾) = exp(𝑑 (𝐾)), due to Ruzsa (1994). Chang (2002) showed that Freiman’s theorem
holds with 𝑑 (𝐾) = 𝐾𝑂 (1) and 𝑓 (𝐾) = exp(𝑑 (𝐾)) (see Exercise 7.11.2). Schoen (2011)
further improved the bounds to 𝑑 (𝐾) = 𝐾1+𝑜 (1) and 𝑓 (𝐾) = exp(𝐾1+𝑜 (1) ). Sanders (2012,
2013) showed that if we change GAPs to “convex progressions” (see Section 7.12), then an
analogous theorem holds with 𝑑 (𝐾) = 𝐾 (log(2𝐾))𝑂 (1) and 𝑓 (𝐾) = exp(𝑑 (𝐾)).

It is easy to see that one cannot do better than 𝑑 (𝐾) ≤ 𝐾 − 1 and 𝑓 (𝐾) = 𝑒𝑂 (𝐾 ) , by
considering a set without additive structure.

Also see Section 7.12 on the polynomial Freiman–Ruzsa conjecture for a variant of
Freiman’s theorem with much better quantitative dependencies.

Remark 7.1.12 (Making the GAP proper). The conclusion of Freiman’s theorem can be
strengthened to force the GAP to be proper, at the cost of potentially increasing 𝑑 (𝐾) and
𝑓 (𝐾). For example, it is known that every GAP of dimension 𝑑 is contained in some proper
GAP of dimension ≤ 𝑑 with at most 𝑑𝑂 (𝑑3 ) factor increase in the volume; see Tao and Vu
(2006, Theorem 3.40).

Remark 7.1.13 (History). Freiman’s original proof (1973) was quite complicated. Ruzsa
(1994) later found a simpler proof, which guided much of the subsequent work. We follow
Ruzsa’s presentation here. Theorem 7.1.10 is sometimes called the Freiman–Ruzsa theorem.
Freiman’s theorem was brought into further prominence due to the role it played in the new
proof of Szemerédi’s theorem by Gowers (2001).

Remark 7.1.14 (Freiman’s theorem in abelian groups). Green and Ruzsa (2007) proved a
generalization of Freiman’s theorem in an arbitrary abelian group. A coset progression is a
set of the form 𝑃 + 𝐻 where 𝑃 is a GAP and 𝐻 is a subgroup of the ambient abelian group.
Define the dimension of this coset progression to be the dimension of 𝑃, and its volume to
be |𝐻 | vol 𝑃. Green and Ruzsa (2007) proved the following theorem.

Theorem 7.1.15 (Freiman’s theorem for general abelian groups)
Let 𝐴 be a subset of an abelian group satisfying |𝐴 + 𝐴| ≤ 𝐾 |𝐴|. Then 𝐴 is contained
in a coset progression of dimension at most 𝑑 (𝐾) and volume at most 𝑓 (𝑘) |𝐴|, where
𝑑 (𝐾) and 𝑓 (𝐾) are constants depending only on 𝐾 .

7.2 Sumset Calculus I: Ruzsa Triangle Inequality
Here are some basic and useful inequalities relating the sizes of sumsets.

Theorem 7.2.1 (Ruzsa triangle inequality)
If 𝐴, 𝐵, 𝐶 are finite subsets of an abelian group, then

|𝐴| |𝐵 − 𝐶 | ≤ |𝐴 − 𝐵| |𝐴 − 𝐶 | .
Proof. For each 𝑑 ∈ 𝐵 − 𝐶, define b(𝑑) ∈ 𝐵 and c(𝑑) ∈ 𝐶 such that 𝑑 = b(𝑑) − c(𝑑). In
other words, we fix a specific choice of 𝑏 and 𝑐 for each element in 𝐵 − 𝐶. Define

𝜙 : 𝐴 × (𝐵 − 𝐶) −→ (𝐴 − 𝐵) × (𝐴 − 𝐶)
(𝑎, 𝑑) ↦−→ (𝑎 − b(𝑑), 𝑎 − c(𝑑)).

MIT OCW: Graph Theory and Additive Combinatorics --- Yufei Zhao



7.3 Sumset Calculus II: Plünnecke’s Inequality 241

Then 𝜙 is injective since we can recover (𝑎, 𝑑) from 𝜙(𝑎, 𝑑) = (𝑥, 𝑦) via 𝑑 = 𝑦 − 𝑥 and then
𝑎 = 𝑥 + b(𝑑). □

Remark 7.2.2. By replacing 𝐵 with −𝐵 and/or 𝐶 with −𝐶, Theorem 7.2.1 implies some
additional sumset inequalities:

|𝐴| |𝐵 + 𝐶 | ≤ |𝐴 + 𝐵| |𝐴 − 𝐶 | ;
|𝐴| |𝐵 + 𝐶 | ≤ |𝐴 − 𝐵| |𝐴 + 𝐶 | ;
|𝐴| |𝐵 − 𝐶 | ≤ |𝐴 + 𝐵| |𝐴 + 𝐶 | .

However, this trick cannot be used to prove the similarly looking inequality

|𝐴| |𝐵 + 𝐶 | ≤ |𝐴 + 𝐵| |𝐴 + 𝐶 | .
This inequality is also true, and we will prove it in the following section.

Remark 7.2.3 (Why is it called a triangle inequality?). If we define

𝜌(𝐴, 𝐵) B log
|𝐴 − 𝐵|√︁
|𝐴| |𝐵|

(called a Ruzsa distance), then Theorem 7.2.1 can be rewritten as

𝜌(𝐵,𝐶) ≤ 𝜌(𝐴, 𝐵) + 𝜌(𝐴,𝐶).
This is why Theorem 7.2.1 is called a “triangle inequality.” However, one should not take
the name too seriously. The function 𝜌 is not a metric because 𝜌(𝐴, 𝐴) ≠ 0 in general.

Exercise 7.2.4 (Iterated sumsets). Let 𝐴 be a finite subset of an abelian group satisfying

|2𝐴 − 2𝐴| ≤ 𝐾 |𝐴| .
Prove that

|𝑚𝐴 − 𝑚𝐴| ≤ 𝐾𝑚−1 |𝐴| for every integer 𝑚 ≥ 2.

In the above exercise, we had to start with the assumption that |2𝐴 − 2𝐴| ≤ 𝐾 |𝐴|. In
the next section, we bound the sizes of iterated sumsets starting with the weaker hypothesis
|𝐴 + 𝐴| ≤ 𝐾 |𝐴|.

7.3 Sumset Calculus II: Plünnecke’s Inequality
We prove the following result, which says that having small doubling implies small iterated
sumsets, with only a polynomial factor change in the expansion ratios.

Theorem 7.3.1 (Plünnecke’s inequality)
Let 𝐴 be a finite subset of an abelian group satisfying

|𝐴 + 𝐴| ≤ 𝐾 |𝐴| .
Then for all integers 𝑚, 𝑛 ≥ 0,

|𝑚𝐴 − 𝑛𝐴| ≤ 𝐾𝑚+𝑛 |𝐴| .
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242 Structure of Set Addition

Remark 7.3.2 (History). Plünnecke (1970) proved a version of the theorem originally using
graph theoretic methods. Ruzsa (1989) gave a simpler version of Plünnecke’s proof and also
extended it from sums to differences. Nevertheless, Ruzsa’s proof was still quite long and
complex. It sets up a “commutative layered graph,” and uses tools from graph theory including
Menger’s theorem. Theorem 7.3.1 is sometimes called the Plünnecke–Ruzsa inequality. See
Ruzsa (2009, Chapter 1) or Tao and Vu (2006, Chapter 6) for an account of this proof.

In a surprising breakthrough, Petridis (2012) found a very short proof of the result, which
we present here.

We will prove the following more general statement. Theorem 7.3.1 is the special case
𝐴 = 𝐵.

Theorem 7.3.3 (Plünnecke’s inequality)
Let 𝐴 and 𝐵 be finite subsets of an abelian group satisfying

|𝐴 + 𝐵| ≤ 𝐾 |𝐴| .
Then for all integers 𝑚, 𝑛 ≥ 0,

|𝑚𝐵 − 𝑛𝐵| ≤ 𝐾𝑚+𝑛 |𝐴| .
The following lemma plays a key role in the proof.

Lemma 7.3.4 (Expansion ratio bounds)
Let 𝑋 and 𝐵 be finite subsets of an abelian group, with |𝑋 | > 0. Suppose

|𝑌 + 𝐵|
|𝑌 | ≥

|𝑋 + 𝐵|
|𝑋 | for all nonempty 𝑌 ⊆ 𝑋.

Then for any nonempty finite subsets 𝐶 of the abelian group,
|𝑋 + 𝐶 + 𝐵|
|𝑋 + 𝐶 | ≤

|𝑋 + 𝐵|
|𝑋 | .

Remark 7.3.5 (Interpretation as expansion ratios). We can interpret Lemma 7.3.4 in terms
of vertex expansion ratios inside the bipartite graph between two copies of the ambient
abelian group, with edges (𝑥, 𝑥 + 𝑏) ranging over all 𝑥 ∈ Γ and 𝑏 ∈ 𝐵. Every vertex subset 𝑋
on the left has neighbors 𝑋 + 𝐵 on the right and thus has vertex expansion ratio |𝑋 + 𝐵| /|𝑋 |.

𝑋
𝑋 + 𝐵

+𝐵

𝑋 +𝐶
𝑋 + 𝐶
+𝐵

𝐴
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7.3 Sumset Calculus II: Plünnecke’s Inequality 243

We will apply Lemma 7.3.4 by choosing 𝑋 among all nonempty subsets of 𝐴 with the
minimum expansion ratio, so that the hypothesis of Lemma 7.3.4 is automatically satisfied.
The conclusion of Lemma 7.3.4 then says that a union of translates of 𝑋 has expansion ratio
at most that of 𝑋 .

Proof of Theorem 7.3.3 given Lemma 7.3.4. Choose 𝑋 among all nonempty subsets of 𝐴
with the minimum |𝑋 + 𝐵| /|𝑋 | so that the hypothesis of Lemma 7.3.4 is satisfied. Also we
have

|𝑋 + 𝐵|
|𝑋 | ≤

|𝐴 + 𝐵|
|𝐴| ≤ 𝐾.

For every integer 𝑛 ≥ 0, applying Lemma 7.3.4 with 𝐶 = 𝑛𝐵, we have
|𝑋 + (𝑛 + 1)𝐵|
|𝑋 + 𝑛𝐵| ≤ |𝑋 + 𝐵||𝑋 | ≤ 𝐾.

So induction on 𝑛 yields, for all 𝑛 ≥ 0,

|𝑋 + 𝑛𝐵 | ≤ 𝐾𝑛 |𝑋 | .
Finally, applying the Ruzsa triangle inequality (Theorem 7.2.1), for all 𝑚, 𝑛 ≥ 0.

|𝑚𝐵 − 𝑛𝐵 | ≤ |𝑋 + 𝑚𝐵| |𝑋 + 𝑛𝐵||𝑋 | ≤ 𝐾𝑚+𝑛 |𝑋 | ≤ 𝐾𝑚+𝑛 |𝐴| . □

Proof of Lemma 7.3.4. We will proceed by induction on |𝐶 |. For the base case |𝐶 | = 1, note
that 𝑋 + 𝐶 is a translate of 𝑋 , so |𝑋 + 𝐶 + 𝐵| = |𝑋 + 𝐵| and |𝑋 + 𝐶 | = |𝑋 |.

Now for the induction step, assume that for some 𝐶,
|𝑋 + 𝐶 + 𝐵|
|𝑋 + 𝐶 | ≤

|𝑋 + 𝐵|
|𝑋 | .

Now consider 𝐶 ∪ {𝑐} for some 𝑐 ∉ 𝐶. We wish to show that
|𝑋 + (𝐶 ∪ {𝑐}) + 𝐵|
|𝑋 + (𝐶 ∪ {𝑐}) | ≤

|𝑋 + 𝐵|
|𝑋 | .

By comparing the change in the left-hand side fraction, it suffices to show that

| (𝑋 + 𝑐 + 𝐵) \ (𝑋 + 𝐶 + 𝐵) | ≤ |𝑋 + 𝐵 ||𝑋 | | (𝑋 + 𝑐) \ (𝑋 + 𝐶) | . (7.1)

Let
𝑌 = {𝑥 ∈ 𝑋 : 𝑥 + 𝑐 + 𝐵 ⊆ 𝑋 + 𝐶 + 𝐵} ⊆ 𝑋.

Then
| (𝑋 + 𝑐 + 𝐵) \ (𝑋 + 𝐶 + 𝐵) | ≤ |𝑋 + 𝐵| − |𝑌 + 𝐵| .

Furthermore, if 𝑥 ∈ 𝑋 satisfies 𝑥 + 𝑐 ∈ 𝑋 +𝐶, then 𝑥 + 𝑐 +𝐵 ⊆ 𝑋 +𝐶 +𝐵 and hence 𝑥 ∈ 𝑌 . So

| (𝑋 + 𝑐) \ (𝑋 + 𝐶) | ≥ |𝑋 | − |𝑌 | .
Thus, to prove (7.1), it suffices to show

|𝑋 + 𝐵| − |𝑌 + 𝐵| ≤ |𝑋 + 𝐵||𝑋 | ( |𝑋 | − |𝑌 |) ,
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244 Structure of Set Addition

which can be rewritten as

|𝑌 + 𝐵| ≥ |𝑋 + 𝐵||𝑋 | |𝑌 | ,

which is true due to the hypothesis on 𝑋 . □

Let us give a quick proof of a variant of the Ruzsa triangle inequality, mentioned in
Remark 7.2.2.

Corollary 7.3.6 (Another triangle inequality)
Let 𝐴, 𝐵, 𝐶 be finite subsets of an abelian group. Then

|𝐴| |𝐵 + 𝐶 | ≤ |𝐴 + 𝐵| |𝐴 + 𝐶 | .

Proof. Choose 𝑋 ⊆ 𝐴 to minimize |𝑋 + 𝐵| /|𝑋 |. Then

|𝐵 + 𝐶 | ≤ |𝑋 + 𝐵 + 𝐶 | Lem. 7.3.4≤ |𝑋 + 𝐶 | |𝑋 + 𝐵||𝑋 | ≤ |𝐴 + 𝐶 |
|𝐴 + 𝐵|
|𝐴| . □

Exercise 7.3.7∗. Show that for every sufficiently large 𝐾 there is some finite set 𝐴 ⊆ Z
such that

|𝐴 + 𝐴| ≤ 𝐾 |𝐴| and |𝐴 − 𝐴| ≥ 𝐾1.99 |𝐴| .

Exercise 7.3.8∗(Loomis–Whitney for sumsets). Show that for every finite subsets 𝐴, 𝐵, 𝐶
in an abelian group, one has

|𝐴 + 𝐵 + 𝐶 |2 ≤ |𝐴 + 𝐵 | |𝐴 + 𝐶 | |𝐵 + 𝐶 | .

Exercise 7.3.9∗ (Sumset vs. difference set). Let 𝐴 ⊆ Z. Prove that

|𝐴 − 𝐴|2/3 ≤ |𝐴 + 𝐴| ≤ |𝐴 − 𝐴|3/2 .

7.4 Covering Lemma
Here is a simple and powerful tool in the study of sumsets (Ruzsa 1999).

Theorem 7.4.1 (Ruzsa covering lemma)
Let 𝑋 and 𝐵 be finite sets in some abelian group. If

|𝑋 + 𝐵 | ≤ 𝐾 |𝐵| ,
then there exists a subset 𝑇 ⊆ 𝑋 with |𝑇 | ≤ 𝐾 such that

𝑋 ⊆ 𝑇 + 𝐵 − 𝐵.
Remark 7.4.2 (Geometric intuition). Imagine that 𝐵 is a unit ball in R𝑛, and cardinality is
replaced by volume. Given some region 𝑋 (the shaded region below), consider a maximal
set T of disjoint union balls with centers in 𝑋 (maximal in the sense that one cannot add an
additional ball without intersecting some other ball).
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Then replacing each ball in T by a ball of radius 2 with the same center, (i.e., replacing
𝐵 by 𝐵 − 𝐵) the resulting balls must cover the region 𝑋 (which amounts to the conclusion
𝑋 ⊆ 𝑇 +𝐵−𝐵), for otherwise at any uncovered point of 𝑋 we could have added an additional
nonoverlapping ball in the previous step.

Similar arguments are important in analysis (e.g., the Vitali covering lemma).

Proof. Let 𝑇 ⊆ 𝑋 be a maximal subset such that 𝑡 + 𝐵 as 𝑡 ranges over 𝑇 are disjoint. Then

|𝑇 | |𝐵| = |𝑇 + 𝐵| ≤ |𝑋 + 𝐵| ≤ 𝐾 |𝐵 | .
So |𝑇 | ≤ 𝐾 .

By the maximality of𝑇 , for all 𝑥 ∈ 𝑋 there exists some 𝑡 ∈ 𝑇 such that (𝑡+𝐵)∩ (𝑥+𝐵) ≠ ∅.
In other words, there exist 𝑡 ∈ 𝑇 and 𝑏, 𝑏′ ∈ 𝐵 such that 𝑡 + 𝑏 = 𝑥 + 𝑏′. Hence 𝑥 ∈ 𝑇 + 𝐵 − 𝐵
for every 𝑥 ∈ 𝑋 . Thus 𝑋 ⊆ 𝑇 + 𝐵 − 𝐵. □

The following “more efficient” covering lemma can be used to prove a better bound in
Freiman’s theorem.

Exercise 7.4.3∗(Chang’s covering lemma). Let 𝐴 and 𝐵 be finite sets in an abelian group
satisfying

|𝐴 + 𝐴| ≤ 𝐾 |𝐴| and |𝐴 + 𝐵| ≤ 𝐾 ′ |𝐵| .
Show that there exists some set 𝑋 in the abelian group so that

𝐴 ⊆ Σ𝑋 + 𝐵 − 𝐵 and |𝑋 | = 𝑂 (𝐾 log(𝐾𝐾 ′)),
where Σ𝑋 denotes the set of all elements that can be written as the sum of a subset of
elements of 𝑋 (including zero as the sum of the empty set).

Hint:Tryfirstfinding2𝐾disjointtranslates𝑎+𝐵.

7.5 Freiman’s Theorem in Groups with Bounded Exponent
Let us prove a finite field model analogue of Freiman’s theorem. The proof only uses the
tools introduced so far, and so it is easier than Freiman’s theorem in the integers.
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Theorem 7.5.1 (Freiman’s theorem in F𝑛2 )
If 𝐴 ⊆ F𝑛2 has |𝐴 + 𝐴| ≤ 𝐾 |𝐴|, then 𝐴 is contained in a subspace of cardinality at most
𝑓 (𝐾) |𝐴|, where 𝑓 (𝐾) is a constant depending only on 𝐾 .

Remark 7.5.2 (Quantitative bounds). We will prove Theorem 7.5.1 with 𝑓 (𝐾) = 2𝐾4
𝐾2.

The exact optimal constant 𝑓 (𝐾) is known for each 𝐾 (Even-Zohar 2012). Asymptotically,
it is 𝑓 (𝐾) = Θ(22𝐾/𝐾).

For a matching lower bound on 𝑓 (𝐾), let 𝐴 = {0, 𝑒1, . . . , 𝑒𝑛} ⊆ F𝑛2 , where 𝑒𝑖 is the 𝑖th
standard basis vector. Then |𝐴 + 𝐴| ∼ 𝑛2/2, and so |𝐴 + 𝐴| /|𝐴| ∼ 𝑛/2. However, 𝐴 is not
contained in a subspace of cardinality less than 2𝑛.

In fact, we prove a more general statement that works for any group with bounded exponent.
This result and proof are due to Ruzsa (1999).

Definition 7.5.3 (Exponent of an abelian group)
The exponent of an abelian group (written additively) is the smallest positive integer
𝑟 such that 𝑟𝑥 = 0 for all elements 𝑥 of the group. If no finite 𝑟 exists, we say that its
exponent is infinite (some conventions say that the exponent is zero).

For example, F𝑛2 has exponent 2. The cyclic group Z/𝑁Z has exponent 𝑁 . The integers Z
has infinite exponent.

We use ⟨𝑨⟩ to refer to the subgroup of a group 𝐺 generated by some subset 𝐴 of 𝐺. Then
the exponent of a group 𝐺 is sup𝑥∈𝐺 |⟨𝑥⟩|. When the group is a vector space (e.g., F𝑛2 ), ⟨𝐴⟩
is the smallest subspace containing 𝐴.

Theorem 7.5.4 (Freiman’s theorem in groups with bounded exponent)
Let 𝐴 be a finite set in an abelian group with exponent 𝑟 < ∞. If |𝐴 + 𝐴| ≤ 𝐾 |𝐴|, then

|⟨𝐴⟩| ≤ 𝐾2𝑟𝐾
4 |𝐴| .

Remark 7.5.5. This theorem is a converse of the observation that if 𝐴 is a large fraction of
a subgroup, then 𝐴 has small doubling.

Proof. By Plünnecke’s inequality (Theorem 7.3.1), we have

|𝐴 + (2𝐴 − 𝐴) | = |3𝐴 − 𝐴| ≤ 𝐾4 |𝐴| .
By the Ruzsa covering lemma (Theorem 7.4.1 applied with 𝑋 = 2𝐴 − 𝐴 and 𝐵 = 𝐴), there
exists some 𝑇 ⊆ 2𝐴 − 𝐴 with |𝑇 | ≤ |𝐴 + (2𝐴 − 𝐴) | /|𝐴| ≤ 𝐾4 such that

2𝐴 − 𝐴 ⊆ 𝑇 + 𝐴 − 𝐴.
Adding 𝐴 to both sides, we have,

3𝐴 − 𝐴 ⊆ 𝑇 + 2𝐴 − 𝐴 ⊆ 2𝑇 + 𝐴 − 𝐴.
Iterating, for any positive integer 𝑛, we have

(𝑛 + 1)𝐴 − 𝐴 ⊆ 𝑛𝑇 + 𝐴 − 𝐴 ⊆ ⟨𝑇⟩ + 𝐴 − 𝐴.
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Since we are in an abelian group with bounded exponent, every element of ⟨𝐴⟩ lies in 𝑛𝐴
for some 𝑛. Thus

⟨𝐴⟩ ⊆
⋃
𝑛≥1

(𝑛𝐴 + 𝐴 − 𝐴) ⊆ ⟨𝑇⟩ + 𝐴 − 𝐴.

Since the exponent of the group is at most 𝑟 < ∞,

|⟨𝑇⟩| ≤ 𝑟 |𝑇 | ≤ 𝑟𝐾4
.

By Plünnecke’s inequality (Theorem 7.3.1),

|𝐴 − 𝐴| ≤ 𝐾2 |𝐴| .
Thus we have,

|⟨𝐴⟩| ≤ 𝑟𝐾4
𝐾2 |𝐴| . □

Remark 7.5.6. Note the crucial use of the Ruzsa covering lemma for controlling 𝑛𝐴 − 𝐴.
Naively bounding 𝑛𝐴 using Plünnecke’s inequality is insufficient.

The above proof for Freiman’s theorem over abelian groups of finite exponent does not
immediately generalize to the integers. Indeed, in Z, |⟨𝑇⟩| = ∞. We overcome this issue
by representing subsets of Z inside a finite group in a way that partially preserves additive
structure.

Exercise 7.5.7. Show that for every real 𝐾 ≥ 1 there is some𝐶𝐾 such that for every finite
set 𝐴 of an abelian group with |𝐴 + 𝐴| ≤ 𝐾 |𝐴|, one has |𝑛𝐴| ≤ 𝑛𝐶𝐾 |𝐴| for every positive
integer 𝑛.

(If we let 𝑓 (𝑛, 𝐾) denote the smallest real number so that |𝐴 + 𝐴| ≤ 𝐾 |𝐴| implies |𝑛𝐾 | ≤ 𝑓 (𝑛, 𝐾) |𝐴|,
then Plünnecke’s inequality gives 𝑓 (𝑛, 𝐾) ≤ 𝐾𝑛, at most a polynomial in 𝐾 for a fixed 𝑛, whereas the
above exercise gives 𝑓 (𝑛, 𝐾) ≤ 𝑛𝐶𝐾 , a polynomial in 𝑛 for a fixed 𝐾 . Does this mean that 𝑓 (𝑛, 𝐾) is at
most some polynomial in both 𝑛 and 𝐾?)

Exercise 7.5.8∗ (Ball volume growth in an abelian Cayley graph). Show that there is
some absolute constant 𝐶 so that if 𝑆 is a finite subset of an abelian group, and 𝑘 is a
positive integer, then

|2𝑘𝑆 | ≤ 𝐶 |𝑆 | |𝑘𝑆 | .

7.6 Freiman Homomorphisms
Consider two sets of integers, depicted pictorially below as elements on the number line:

𝐴 =

𝐵 =

The two sets are very similar from the point of view of additive structure. For example, the
obvious bĳection between 𝐴 and 𝐵 has the nice property that any solution to the equation
𝑤 + 𝑥 = 𝑦 + 𝑧 in one set is automatically a solution in the other. Sometimes, in additive
combinatorics, it is a good idea to treat these two sets as isomorphic. Let us define this
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notion formally and study what it means for a map between sets to partially preserve additive
structure.

Definition 7.6.1 (Freiman homomorphism)
Let 𝐴 and 𝐵 be subsets in two possibly different abelian groups. Let 𝑠 ≥ 2 be a positive
integer. We say that 𝜙 : 𝐴→ 𝐵 is a Freiman 𝒔-homomorphism (or Freiman homomor-
phism of order 𝒔), if

𝜙(𝑎1) + · · · + 𝜙(𝑎𝑠) = 𝜙(𝑎′1) + · · · + 𝜙(𝑎′𝑠)
whenever 𝑎1, . . . , 𝑎𝑠, 𝑎

′
1, . . . , 𝑎

′
𝑠 ∈ 𝐴 satisfy

𝑎1 + · · · + 𝑎𝑠 = 𝑎′1 + · · · + 𝑎′𝑠 .
We say that 𝜙 is a Freiman 𝒔-isomorphism if 𝜙 is a bĳection, and both 𝜙 and 𝜙−1 are
Freiman 𝑠-homomorphisms. We say that 𝐴 and 𝐵 are Freiman 𝒔-isomorphic if there
exists a Freiman 𝑠-isomorphism between them.

Remark 7.6.2 (Interpretation). Informally, a Freiman 𝑠-homomorphism respects 𝑠-fold
sums relations. Two sets are Freiman 𝑠-isomorphic if there is a bĳection between them
that respects solutions to the equation 𝑎1 + · · · + 𝑎𝑠 = 𝑎′1 + · · · + 𝑎′𝑠.
Remark 7.6.3 (Composition). If 𝜙1 and 𝜙2 are both Freiman 𝑠-homomorphisms, then their
composition 𝜙1 ◦ 𝜙2 is also a Freiman 𝑠-homomorphism. If 𝜙1 and 𝜙2 are both Freiman
𝑠-isomorphisms, then their composition 𝜙1 ◦ 𝜙2 is a Freiman 𝑠-isomorphism.

Remark 7.6.4 (Descension). Every Freiman (𝑠 + 1)-homomorphism is automatically a
Freiman 𝑠-homomorphism (by setting 𝑎𝑠+1 = 𝑎′𝑠+1). Likewise, every Freiman (𝑠 + 1)-
isomorphism is automatically a Freiman 𝑠-isomorphism.

Example 7.6.5 (Freiman homomorphism).
(a) Every abelian group homomorphism is a Freiman homomorphism of every order.
(b) Let 𝑆 be a set with no nontrivial solutions to 𝑎+ 𝑏 = 𝑐+ 𝑑 (such a set is called a Sidon

set). Then every map from 𝑆 to an abelian group is a Freiman 2-homomorphism.
(c) The natural embedding 𝜙 : {0, 1}𝑛 → (Z/2Z)𝑛 is the restriction of a group homo-

morphism from Z𝑛, so it is a Freiman homomorphism of every order. This map 𝜙 is
a bĳection. However, the inverse of 𝜙 does not preserve some additive relations (e.g.,
1 + 1 = 0 + 0 (mod 2)). So 𝜙 is not a Freiman 2-isomorphism!

(d) Likewise, the natural embedding 𝜙 : [𝑁] → Z/𝑁Z is a Freiman homomorphism of
every order but not a Freiman 2-isomorphism. However, when the domain is restricted
to all integers less than 𝑁/𝑠, then 𝜙 becomes a Freiman 𝑠-isomorphism onto its image
(why?).

The last example has the following easy generalization, which we will use later. The
diameter of a set 𝐴 is defined to be

diam 𝑨 B sup
𝑎,𝑏∈𝐴

|𝑎 − 𝑏 | .
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Proposition 7.6.6 (Small diameter sets)
If 𝐴 ⊆ Z has diameter < 𝑁/𝑠, then 𝐴 is Freiman 𝑠-isomorphic to its image mod 𝑁 .

Intuitively, the idea is that there are no wraparound additive relations mod 𝑁 if 𝐴 has small
diameter.

Proof. The mod 𝑁 map Z → Z/𝑁 is a group homomorphism, and hence automatically a
Freiman 𝑠-homomorphism. Now, if 𝑎1, . . . , 𝑎𝑠, 𝑎

′
1, . . . , 𝑎

′
𝑠 ∈ 𝐴 are such that

(𝑎1 + · · · + 𝑎𝑠) − (𝑎′1 + · · · + 𝑎′𝑠) ≡ 0 (mod 𝑁),
then the left-hand side, viewed as an integer, has absolute value less than 𝑁 (since

��𝑎𝑖 − 𝑎′𝑖 �� <
𝑁/𝑠 for each 𝑖). Thus the left-hand side must be 0 in Z. So the inverse of the mod 𝑁 map is
a Freiman 𝑠-homomorphism over 𝐴, and thus mod 𝑁 is a Freiman 𝑠-isomorphism. □

7.7 Modeling Lemma
The goal of the Ruzsa modeling lemma is to represent a set with bounded doubling inside
a small cyclic group in a way that that preserves relevant additive data. This is useful since
initially 𝐴 may contain integers of vastly different magnitudes. On the other hand, if 𝐴 is
a subset of Z/𝑁Z with 𝑁 comparable to 𝐴, then we have additional tools such as Fourier
analysis (to be discussed in the following section).

As warm-up, let us first prove an easier result in the finite field model.

Proposition 7.7.1 (Modeling lemma in finite field model)
Let 𝐴 ⊆ F𝑛2 . Suppose |𝑠𝐴 − 𝑠𝐴| ≤ 2𝑚 for some positive integer 𝑚. Then 𝐴 is Freiman
𝑠-isomorphic to some subset of F𝑚2 .

Remark 7.7.2. If |𝐴 + 𝐴| ≤ 𝐾 |𝐴|, then Plünnecke’s inequality (Theorem 7.3.1) implies
|𝑠𝐴 − 𝑠𝐴| ≤ 𝐾2𝑠 |𝐴|. By taking 𝑚 to be the smallest integer with 𝐾2𝑠 |𝐴| ≤ 2𝑚, we see that
the cardinality of the final vector space F𝑚2 is within a constant factor 2𝐾2𝑠 of |𝐴|. In contrast,
𝐴 initially lived in a space F𝑛2 that could potentially be much larger.

Proof. It is easy to check that the following are equivalent for a linear map 𝜙 : F𝑛2 → F𝑚2 :
(1) 𝜙 is a Freiman 𝑠-isomorphism when restricted to 𝐴.
(2) 𝜙 is injective on 𝑠𝐴.
(3) 𝜙(𝑥) ≠ 0 for all nonzero 𝑥 ∈ 𝑠𝐴 − 𝑠𝐴.
Then let 𝜙 : F𝑛2 → F𝑚2 be a linear map chosen uniformly at random. Each nonzero 𝑥 ∈

𝑠𝐴 − 𝑠𝐴 violates condition (3) with probability 2−𝑚. Since there are < 2𝑚 nonzero elements
in 𝑠𝐴− 𝑠𝐴 by hypothesis, (3) is satisfied with with positive probability. Therefore, the desired
Freiman 𝑠-isomorphism exists. □

Starting with 𝐴 ⊆ Z of small doubling, we will find a large fraction of 𝐴 that can be
modeled inside a cyclic group whose size is comparable to |𝐴|. It turns out to be enough to
model a large subset of 𝐴 rather than all of 𝐴. We will apply the Ruzsa covering lemma later
on to recover the structure of the entire set 𝐴.
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Theorem 7.7.3 (Ruzsa modeling lemma)
Let 𝐴 ⊆ Z. Let 𝑠 ≥ 2 and 𝑁 be positive integers. Suppose |𝑠𝐴 − 𝑠𝐴| ≤ 𝑁 . Then there
exists 𝐴′ ⊆ 𝐴 with |𝐴′ | ≥ |𝐴| /𝑠 such that 𝐴′ is Freiman 𝑠-isomorphic to a subset of
Z/𝑁Z.

Proof. Choose any prime 𝑞 > max(𝑠𝐴 − 𝑠𝐴). For every choice of 𝜆 ∈ [𝑞 − 1], we define 𝜙𝜆
as the composition of functions as follows

𝜙 = 𝜙𝜆 : Z
mod 𝑞−−−−→ Z/𝑞Z ·𝜆−−−−→ Z/𝑞Z (mod 𝑞)−1

−−−−−−−−−→ {0, 1, . . . , 𝑞 − 1} .
The first map is the mod 𝑞 map. The second map sends 𝑥 to 𝜆𝑥. The last map inverts the mod
𝑞 map Z→ Z/𝑞Z.

If 𝜆 ∈ [𝑞 − 1] is chosen uniformly at random, then each nonzero integer is mapped to a
uniformly random element of [𝑞 − 1] under 𝜙𝜆, and so is divisible by 𝑁 with probability
≤ 1/𝑁 . Since there are fewer than 𝑁 nonzero elements in 𝑠𝐴 − 𝑠𝐴, there exists a choice of 𝜆
so that

𝑁 ∤ 𝜙𝜆(𝑥) for any nonzero 𝑥 ∈ 𝑠𝐴 − 𝑠𝐴. (7.2)

Let us fix this 𝜆 from now on and write 𝜙 = 𝜙𝜆.
Among the three functions whose composition defines 𝜙, the first map (i.e., mod 𝑞) and the

second map (·𝜆 in Z/𝑞Z) are group homomorphisms, and hence Freiman 𝑠-homomorphisms.
The last map is not a Freiman 𝑠-homomorphism, but it becomes one when restricted to an
interval of at most 𝑞/𝑠 elements (see Proposition 7.6.6). By the pigeonhole principle, we can
find an interval 𝐼 with

diam 𝐼 < 𝑞/𝑠
such that

𝐴′ = {𝑎 ∈ 𝐴 : 𝜙(𝑎) ∈ 𝐼}
has ≥ |𝐴| /𝑠 elements. So 𝜙 sends 𝐴′ Freiman 𝑠-homomorphically to its image.

We further compose 𝜙 with the mod 𝑁 map to obtain

𝜓 : Z
𝜙−−→ {0, 1, . . . , 𝑞 − 1} mod 𝑁−−−−−→ Z/𝑁Z.

We claim that 𝜓 maps 𝐴′ Freiman 𝑠-isomorphically to its image. Indeed, we saw that 𝜓 is a
Freiman 𝑠-homomorphism when restricted to 𝐴′ (since both 𝜙|𝐴′ and the mod 𝑁 map are).
Now suppose 𝑎1, . . . , 𝑎𝑠, 𝑎

′
1, . . . , 𝑎

′
𝑠 ∈ 𝐴′ satisfy

𝜓(𝑎1) + · · · + 𝜓(𝑎𝑠) = 𝜓(𝑎′1) + · · · + 𝜓(𝑎′𝑠),
which is the same as saying that 𝑁 divides

𝑦 B 𝜙(𝑎1) + · · · + 𝜙(𝑎𝑠) − 𝜙(𝑎′1) − · · · − 𝜙(𝑎′𝑠) ∈ Z.
By swapping (𝑎1, . . . , 𝑎𝑠) with (𝑎′1, . . . , 𝑎′𝑠) if needed, we may assume that 𝑦 ≥ 0. Since
𝜙(𝐴′) ⊆ 𝐼, we have |𝜙(𝑎𝑖) − 𝜙(𝑎′𝑖) | ≤ diam 𝐼 < 𝑞/𝑠 for each 𝑖, and thus

0 ≤ 𝑦 < 𝑞.
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Let
𝑥 = 𝑎1 + · · · + 𝑎𝑠 − 𝑎′1 − · · · − 𝑎′𝑠 ∈ 𝑠𝐴 − 𝑠𝐴.

Since 𝜙 mod 𝑞 is a group homomorphism,

𝜙(𝑥) ≡ 𝜙(𝑎1) + · · · + 𝜙(𝑎𝑠) − 𝜙(𝑎′1) − · · · − 𝜙(𝑎′𝑠) = 𝑦 (mod 𝑞).
Since

𝜙(𝑥), 𝑦 ∈ [0, 𝑞) ∩ Z and 𝜙(𝑥) ≡ 𝑦 (mod 𝑞),
we have 𝜙(𝑥) = 𝑦. Since 𝑁 divides 𝑦 = 𝜙(𝑥), and by (7.2), 𝑁 ∤ 𝜙(𝑥) for any nonzero
𝑥 ∈ 𝑠𝐴 − 𝑠𝐴, we must have 𝑥 = 0. Thus

𝑎1 + · · · + 𝑎𝑠 = 𝑎′1 + · · · + 𝑎′𝑠 .
Hence 𝐴′ is a set of size ≥ |𝐴| /𝑠 that is Freiman 𝑠-isomorphic via𝜓 to its image inZ/𝑁Z. □

Exercise 7.7.4 (Modeling arbitrary sets of integers). Let 𝐴 ⊆ Z with |𝐴| = 𝑛.
(a) Let 𝑝 be a prime. Show that there is some integer 𝑡 relatively prime to 𝑝 such that
∥𝑎𝑡/𝑝∥R/Z ≤ 𝑝−1/𝑛 for all 𝑎 ∈ 𝐴.

(b) Show that 𝐴 is Freiman 2-isomorphic to a subset of [𝑁] for some 𝑁 = (4 + 𝑜(1))𝑛.
(c) Show that (b) cannot be improved to 𝑁 = 2𝑛−2.

(You may use the fact that the smallest prime larger than 𝑚 has size 𝑚 + 𝑜(𝑚).)

Exercise 7.7.5 (Sumset with 3-AP-free set). Let 𝐴 and 𝐵 be 𝑛-element subsets of the
integers. Suppose 𝐴 is 3-AP free. Prove that |𝐴 + 𝐵| ≥ 𝑛(log log 𝑛)1/100 provided that 𝑛 is
sufficiently large.

Hint:Ruzsatriangleinequality,Plünnecke’sinequality,Ruzsamodellemma,Roth’stheorem

Exercise 7.7.6 (3-AP-free subsets of arbitrary sets of integers). Prove that there is some
constant 𝐶 > 0 so that every set of 𝑛 integers has a 3-AP-free subset of size ≥ 𝑛𝑒−𝐶

√
log 𝑛.

7.8 Iterated Sumsets: Bogolyubov’s Lemma
The goal of this section is to find a large Bohr set inside 2𝐴 − 2𝐴, provided that 𝐴 is a
relatively large subset of Z/𝑁Z. The idea is due to Bogolyubov (1939).

Let us first explain what happens in the finite field model. Let 𝐴 ⊆ F𝑛2 with |𝐴| ≥ 𝛼2𝑛.
(Think of 𝛼 as a constant for now.) Since 𝐴 is arbitrary, we do not expect it to contain any
large subspaces. But perhaps 𝐴 + 𝐴 always does.

Question 7.8.1 (Large structure in 𝐴 + 𝐴)
Suppose 𝐴 ⊆ F𝑛2 and |𝐴| = 𝛼2𝑛 where 𝛼 is a constant independent of 𝑛. Must it be the
case that 𝐴 + 𝐴 contains a large subspace of codimension 𝑂𝛼 (1)?

The answer to the above question is no, as evidenced by the following example. (Niveau
is French for level.)
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Example 7.8.2 (Niveau set). Let 𝐴 be the set of all points in F𝑛2 with Hamming weight
(number of 1 entries) at most (𝑛−𝑐√𝑛)/2. Note by the central limit theorem |𝐴| = (𝛼+𝑜(1))2𝑛
for for some constant 𝛼 = 𝛼(𝑐) ∈ (0, 1). The sumset 𝐴 + 𝐴 consists of points in the boolean
cube whose Hamming weight is at most 𝑛 − 𝑐√𝑛 and thus does not contain any subspace of
codimension < 𝑐

√
𝑛, by Lemma 6.5.4.

It turns out that the iterated sumset 2𝐴−2𝐴 (same as 4𝐴 in F𝑛2 ) always contains a bounded
codimensional subspace. The intuition is that taking sumsets “smooths” out the structure of
a set, analogous to how convolutions in real analysis make functions more smooth.

𝑓

𝑓 ∗ 𝑓

𝑓 ∗ 𝑓 ∗ 𝑓

𝑓 ∗ 𝑓 ∗ 𝑓 ∗ 𝑓

Recall some basic properties of the Fourier transform. Given 𝐴 ⊆ F𝑛𝑝 with |𝐴| = 𝛼𝑝𝑛, we
have

1̂𝐴(0) = 𝛼,
and by Parseval’s identity ∑︁

𝑟∈F𝑛𝑝
|1̂𝐴(𝑟) |2 = E𝑥∈F𝑛𝑝 |1𝐴(𝑥) |2 = 𝛼.

We write 𝜔 = exp(2𝜋𝑖/𝑝) in the proof below.

Theorem 7.8.3 (Bogolyubov’s lemma in F𝑛𝑝)
If 𝐴 ⊆ F𝑛𝑝 and |𝐴| = 𝛼𝑝𝑛 > 0, then 2𝐴−2𝐴 contains a subspace of codimension < 1/𝛼2.

Proof. Let
𝑓 = 1𝐴 ∗ 1𝐴 ∗ 1−𝐴 ∗ 1−𝐴,

which is supported on 2𝐴 − 2𝐴. By the convolution identity (Theorem 6.1.7), noting that
1̂−𝐴(𝑟) = 1̂𝐴(𝑟), we have, for every 𝑟 ∈ F𝑛𝑝,

�̂� (𝑟) = 1̂𝐴(𝑟)21̂−𝐴(𝑟)2 = |1̂𝐴(𝑟) |4.
By the Fourier inversion formula (Theorem 6.1.2), we have

𝑓 (𝑥) =
∑︁
𝑟∈F𝑛𝑝

�̂� (𝑟)𝜔𝑟 ·𝑥 =
∑︁
𝑟∈F𝑛𝑝
|1̂𝐴(𝑟) |4𝜔𝑟 ·𝑥 .
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It suffices to find a subspace where 𝑓 is positive since 𝑓 (𝑥) > 0 implies 𝑥 ∈ 2𝐴 − 2𝐴. We
will take the subspace defined by large Fourier coefficients. Let

𝑅 =
{
𝑟 ∈ F𝑛𝑝\{0} : |1̂𝐴(𝑟) | > 𝛼3/2

}
.

We can bound the size of 𝑅 using Parseval’s identity:

|𝑅 | 𝛼3 ≤
∑︁
𝑟∈𝑅
|1̂𝐴(𝑟) |2 <

∑︁
𝑟∈F𝑛𝑝
|1̂𝐴(𝑟) |2 = E𝑥 |1𝐴(𝑥) |2 = 𝛼.

(Skip the preceding step if 𝑅 is empty.) So

|𝑅 | < 1/𝛼2.

If 𝑟 ∉ 𝑅 ∪ {0}, then |1̂𝐴(𝑟) | ≤ 𝛼3/2. So, applying Parseval’s identity again,∑︁
𝑟∉𝑅∪{0}

|1̂𝐴(𝑟) |4 ≤ max
𝑟∉𝑅∪{0}

|1̂𝐴(𝑟) |2
∑︁

𝑟∉𝑅∪{0}
|1̂𝐴(𝑟) |2

< 𝛼3
∑︁
𝑟∈F𝑛𝑝
|1̂𝐴(𝑟) |2 = 𝛼3E𝑥 |1𝐴(𝑥) |2 = 𝛼4.

Thus, for all 𝑥 ∈ 𝑅⊥, so that 𝑥 · 𝑟 = 0 for all 𝑟 ∈ 𝑅, we have

𝑓 (𝑥) =
∑︁
𝑟∈F𝑛𝑝
|1̂𝐴(𝑟) |4 Re𝜔𝑟 ·𝑥

≥ |1̂𝐴(0) |4 +
∑︁
𝑟∈𝑅
|1̂𝐴(𝑟) |4 −

∑︁
𝑟∉𝑅∪{0}

|1̂𝐴(𝑟) |4

> 𝛼4 + 0 − 𝛼4

≥ 0.

Thus 𝑅⊥ ⊆ supp( 𝑓 ) = 2𝐴−2𝐴. Since |𝑅 | < 1/𝛼2, we have found a subspace of codimension
< 1/𝛼2 contained in 2𝐴 − 2𝐴. □

To formulate an analogous result for a cyclic group Z/𝑁Z, we need the notion of a Bohr
set, which was mentioned earlier in the context of Roth’s theorem (Remark 6.4.7).

Definition 7.8.4 (Bohr sets in Z/𝑁Z)
Let 𝑅 ⊆ Z/𝑁Z. Define

Bohr(𝑅, 𝜀) = {𝑥 ∈ Z/𝑁Z : ∥𝑟𝑥/𝑁 ∥R/Z ≤ 𝜀, for all 𝑟 ∈ 𝑅}
where ∥·∥R/Z denotes the distance to the nearest integer. Its dimension is |𝑅 | and width
is 𝜀. (Strictly speaking, the definition of a Bohr set includes the data of 𝑅 and 𝜀 and not
just the set of elements above.)

Bogolyubov’s lemma holds over Z/𝑁Z after replacing subspaces by Bohr sets. Note that
the dimension of a Bohr set of Z/𝑁Z corresponds to the codimension of a subspace in F𝑛𝑝.

Theorem 7.8.5 (Bogolyubov’s lemma in Z/𝑁Z)
If 𝐴 ⊆ Z/𝑁Z and |𝐴| = 𝛼𝑁 then 2𝐴 − 2𝐴 contains some Bohr set Bohr(𝑅, 1/4) with
|𝑅 | < 1/𝛼2.
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With the right setup, the proof is essentially identical to that of Theorem 7.8.3.
Given 𝑓 : Z/𝑁Z→ C, we define its Fourier transform to be the function �̂� : Z/𝑁Z→ C

given by
�̂� (𝑟) = E𝑥∈Z/𝑁Z 𝑓 (𝑥)𝜔−𝑟 𝑥

where 𝜔 = exp(2𝜋𝑖/𝑁). Fourier inversion, Parseval’s identity, and the convolution identity
all work the same way.

Proof. Let
𝑓 = 1𝐴 ∗ 1𝐴 ∗ 1−𝐴 ∗ 1−𝐴,

which is supported on 2𝐴 − 2𝐴. By the convolution identity, for every 𝑟 ∈ Z/𝑁Z,

�̂� (𝑟) = 1̂𝐴
2(𝑟)1̂2

−𝐴(𝑟) = |1̂𝐴(𝑟) |4.
By Fourier inversion, we have (noting that 𝑓 is real-valued)

𝑓 (𝑥) =
∑︁

𝑟∈Z/𝑁Z
�̂� (𝑟)𝜔𝑟 𝑥 =

∑︁
𝑟∈Z/𝑁Z

|1̂𝐴(𝑟) |4𝜔𝑟 𝑥 .

(Skip the preceding step if 𝑅 is empty.) Let

𝑅 =
{
𝑟 ∈ Z/𝑁Z\{0} : |1̂𝐴(𝑟) | > 𝛼3/2

}
.

As earlier, we can bound the size of 𝑅 using Parseval’s identity:

|𝑅 | 𝛼3 ≤
∑︁
𝑟∈𝑅
|1̂𝐴(𝑟) |2 <

∑︁
𝑟∈F𝑛𝑝
|1̂𝐴(𝑟) |2 = E𝑥 |1𝐴(𝑥) |2 = 𝛼.

So
|𝑅 | < 1/𝛼2.

We have ∑︁
𝑟∉𝑅∪{0}

|1̂𝐴(𝑟) |4 ≤ 𝛼3
∑︁

𝑟∉𝑅∪{0}
|1̂𝐴(𝑟) |2 < 𝛼4.

For all 𝑥 ∈ Bohr(𝑅, 1/4), every 𝑟 ∈ 𝑅 satisfies ∥𝑟𝑥/𝑁 ∥R/Z ≤ 1/4, and so cos(2𝜋𝑟𝑥/𝑁) ≥ 0.
Thus every 𝑥 ∈ Bohr(𝑅, 1/4) satisfies

𝑓 (𝑥) =
∑︁

𝑟∈Z/𝑁Z
|1̂𝐴(𝑟) |4𝜔𝑟 ·𝑥

≥ |1̂𝐴(0) |4 +
∑︁
𝑟∈𝑅
|1̂𝐴(𝑟) |4 −

∑︁
𝑟∉𝑅∪{0}

|1̂𝐴(𝑟) |4

> 𝛼4 + 0 − 𝛼4 ≥ 0.

Hence Bohr(𝑅, 1/4) ⊆ 2𝐴 − 2𝐴. □

Remark 7.8.6 (Iterated sumsets and Goldbach conjecture). The above proof hints at why
it is easier to understand the iterated sumset 𝑘𝐴 when 𝑘 ≥ 3 than 𝑘 = 2 (roughly speaking,
we need two iterations to just apply Parseval, and the extra room is helpful). Exercise 7.8.7
below shows that the three-fold iterated sumset of every large subset of F𝑛𝑝 contains a large
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affine subspace (we do not always have a large subspace since the origin is not necessarily
even in 3𝐴).

A related phenomenon arises in Goldbach conjecture. Let 𝑃 denote the set of primes. The
still open Goldbach conjecture states that 𝑃 + 𝑃 contains all sufficiently large even integers.
On the other hand, Vinogradov (1937) showed that 𝑃 + 𝑃 + 𝑃 contains all sufficiently large
odd integers (also known as the weak or ternary Goldbach problem).

Our next goal is to find a large GAP in the Bohr set produced by Bogolyubov’s lemma. To
do this, we need some results from the geometry of numbers.

Exercise 7.8.7 (Bogolyubov with 3-fold sums). Let 𝐴 ⊆ F𝑛𝑝 with |𝐴| = 𝛼𝑝𝑛. Prove that
𝐴 + 𝐴 + 𝐴 contains a translate of a subspace of codimension 𝑂 (𝛼−3).

Exercise 7.8.8 (Bogolyubov with better bounds). Let 𝐴 ⊆ F𝑛𝑝 with |𝐴| = 𝛼𝑝𝑛.
(a) Show that if |𝐴 + 𝐴| < 0.99 · 2𝑛, then there is some 𝑟 ∈ F𝑛𝑝 \ {0} such that
|1̂𝐴(𝑟) | > 𝑐𝛼3/2 for some absolute constant 𝑐 > 0.

(b) By iterating (a), show that 𝐴+𝐴 contains at least 99% of a subspace of codimension
𝑂 (𝛼−1/2).

(c) Deduce that 2𝐴 − 2𝐴 contains a subspace of codimension 𝑂 (𝛼−1/2).

7.9 Geometry of Numbers
We will need some results concerning lattices and convex bodies belonging to a topic in
number theory called the geometry of numbers.

Definition 7.9.1 (Lattice)
A lattice in R𝑑 is a set of the form

Λ = Z𝑣1 ⊕ · · · ⊕ Z𝑣𝑑 = {𝑛1𝑣1 + · · · + 𝑛𝑑𝑣𝑑 : 𝑛1, . . . , 𝑛𝑑 ∈ Z}
where 𝑣1, . . . , 𝑣𝑑 ∈ R𝑑 are linearly independent vectors.

The fundamental parallelepiped of a lattice Λ with respect to the basis 𝑣1, . . . , 𝑣𝑑 is

{𝑥1𝑣1 + · · · + 𝑥𝑑𝑣𝑑 : 𝑥1, . . . , 𝑥𝑑 ∈ [0, 1)} .
The determinant of this lattice is defined to be

det𝚲 B

������det ©
«
| · · · |
𝑣1 · · · 𝑣𝑑
| · · · |

ª®
¬
������ .

This is the absolute value of the determinant of a matrix with 𝑣1, . . . , 𝑣𝑑 as columns.

Given a lattice, there are many choices of a basis for the lattice. The determinant of a
lattice does not depend on the choice of a basis, and equals the volume of every fundamental
parallelepiped. Translations of the fundamental parallelepiped by lattice vectors tiles (i.e.,
partitions) the space.

An example of a lattice is illustrated below. Two different fundamental parallelepipeds are
shaded.
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0 𝑣1

𝑣2

Let Λ ⊆ R𝑑 be a lattice. Let 𝐾 ⊆ R𝑑 be a centrally symmetric convex body (here centrally
symmetric means that −𝑥 ∈ 𝐾 whenever 𝑥 ∈ 𝐾). For each 𝜆 ≥ 0, let 𝜆𝐾 = {𝜆𝑥 : 𝑥 ∈ 𝐾} be
the dilation of 𝐾 by a factor 𝜆.

As illustrated below, imagine an animation where at time 𝜆 we see 𝜆𝐾 . This growing
convex body initially is just the origin, and at some point it sees its first nonzero lattice point
b1. Let us continue to grow this convex body. Later, at some point, it sees the first lattice
point b2 in a new dimension not seen previously. And we can continue until the convex body
grows big enough to contain lattice points that span all directions.

0
𝐾

𝜆1𝐾
𝜆2𝐾

b2

b1

The process of dilating a convex body motivates the next definition.

Definition 7.9.2 (Successive minima)
Let Λ be a lattice in R𝑑 and 𝐾 ⊆ R𝑑 a centrally symmetric convex body. For each
1 ≤ 𝑖 ≤ 𝑑, the 𝒊th successive minimum of 𝐾 with respect to Λ is defined to be

𝜆𝑖 = inf{𝜆 ≥ 0 : dim(span(𝜆𝐾 ∩ Λ)) ≥ 𝑖}.
Equivalently, 𝜆𝑖 is the minimum 𝜆 such that 𝜆𝐾 contains 𝑖 linearly independent lattice
vectors from Λ.

A directional basis of 𝐾 with respect to Λ is a basis b1, . . . , b𝑑 of R𝑑 such that
b𝑖 ∈ 𝜆𝑖𝐾 ∩ Λ for each 𝑖 = 1, . . . , 𝑑.

Note that there may be more than one possible directional basis.

Example 7.9.3 (A directional basis does not necessarily generate the lattice). Let 𝑒1, . . . ,
𝑒8 be the standard basis vectors in R8. Let 𝑣 = (𝑒1 + · · · + 𝑒8)/2. Consider the lattice

Λ = Z𝑒1 ⊕ · · · ⊕ Z𝑒7 ⊕ Z𝑣 = Z8 + {0, 𝑣} .
Let 𝐾 be the unit ball inR8. Note that the directional basis of𝐾 with respect toΛ is 𝑒1, . . . , 𝑒8,
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as all nonzero lattice points in Λ have length ≥ 1 (in particular, |𝑣 | =
√

2). This example
shows that the directional basis of a convex body 𝐾 is not necessarily a Z-basis of Λ.

In the next section, we will apply the following fundamental result from the geometry of
numbers (Minkowski 1896).

Theorem 7.9.4 (Minkowski’s second theorem)
LetΛ ∈ R𝑑 be a lattice and𝐾 ⊆ R𝑑 a centrally symmetric convex body. Let𝜆1 ≤ · · · ≤ 𝜆𝑑
be the successive minima of 𝐾 with respect to Λ. Then

𝜆1 . . . 𝜆𝑑vol(𝐾) ≤ 2𝑑det(Λ).

Example 7.9.5. Note that Minkowski’s second theorem is tight when

𝐾 =

[
− 1
𝜆1
,

1
𝜆1

]
× · · · ×

[
− 1
𝜆𝑑
,

1
𝜆𝑑

]

and Λ is the lattice Z𝑑 .

We will prove this theorem in the remainder of the section. The proof, while not long, is
rather tricky. Feel free to skip the proof and jump to the next section.

Here is a simple geometric pigeonhole principle (Blichfeldt 1914).

Theorem 7.9.6 (Blichfeldt’s theorem)
Let Λ ⊆ R𝑑 be a lattice and 𝐾 ⊆ R𝑑 be a measurable set with vol(𝐾) > det(Λ). Then
there are distinct points 𝑥, 𝑦 ∈ 𝐾 with 𝑥 − 𝑦 ∈ Λ.

Proof. Fix a fundamental parallelepiped 𝑃. Then 𝑣 + 𝑃 tiles R𝑑 as 𝑣 ranges over Λ. Partition
𝐾 by this tiling. For the portion of 𝐾 lying in 𝑣 + 𝑃, translate it by −𝑣 to bring it back inside
𝑃. Then the parts of 𝐾 all end up back inside 𝑃 via translations by lattice vectors. Since
vol𝐾 > vol 𝑃 = detΛ, some distinct pair of points 𝑥, 𝑦 ∈ 𝐾 must end up at the same point
of 𝑃. This then implies that 𝑥 − 𝑦 ∈ Λ. □

Here is an easy corollary (though we will not need it).

Theorem 7.9.7 (Minkowski’s first theorem)
Let Λ be a lattice in R𝑑 and 𝐾 ⊆ R𝑑 a centrally symmetric convex body. If vol(𝐾) >
2𝑑 det(Λ), then 𝐾 contains a nonzero point of Λ.

Proof. We have vol( 12𝐾) = 2−𝑑 vol(𝐾) > det(Λ). By Blichfeldt’s theorem there exist distinct
𝑥, 𝑦 ∈ 1

2𝐾 such that 𝑥 − 𝑦 ∈ Λ. The point 𝑥 − 𝑦 is the midpoint of 2𝑥 and −2𝑦, both of which
lie in 𝐾 (using the face that 𝐾 is centrally symmetric) and hence 𝑥 − 𝑦 lies in 𝐾 (since 𝐾 is
convex). □

Note that Minkowski’s first theorem is tight for 𝐾 = [−1, 1]𝑑 and Z𝑑 .

Proof of Minkowski’s second theorem (Theorem 7.9.4). The idea is to grow 𝐾 until we hit
a point of Λ, and then continue growing, but only in the complementary direction. However
rigorously carrying out this procedure is very tricky (and easy to get wrong).
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In the argument below, 𝐾 is open (i.e., does not include the boundary). Fix a directional
basis b1, . . . , b𝑑 . For each 1 ≤ 𝑗 ≤ 𝑑, define map 𝜙 𝑗 : 𝐾 → 𝐾 by sending each point 𝑥 ∈ 𝐾
to the center of mass of the ( 𝑗 − 1)-dimensional slice of 𝐾 which contains 𝑥 and is parallel
to spanR{b1, . . . , b 𝑗−1}. In particular, 𝜙1(𝑥) = 𝑥 for all 𝑥 ∈ 𝐾 .

Define a function 𝜓 : 𝐾 → R𝑑 by

𝜓(𝑥) =
𝑑∑︁
𝑗=1

(
𝜆 𝑗 − 𝜆 𝑗−1

2

)
𝜙 𝑗 (𝑥),

where by convention we let 𝜆0 = 0.
For x = 𝑥1b1 + · · · + 𝑥𝑑b𝑑 ∈ R𝑑 with 𝑥1, . . . , 𝑥𝑑 ∈ R, we have

𝜙 𝑗 (x) =
∑︁
𝑖< 𝑗

𝑐 𝑗 ,𝑖 (𝑥 𝑗 , . . . , 𝑥𝑑)b𝑖 +
∑︁
𝑖≥ 𝑗

𝑥𝑖b𝑖

for some continuous functions 𝑐 𝑗 ,𝑖. By examining the coefficient of each b𝑖, we find

𝜓(x) =
𝑑∑︁
𝑖=1

(
𝜆𝑖𝑥𝑖

2
+ 𝜓𝑖 (𝑥𝑖+1, . . . , 𝑥𝑑)

)
b𝑖

for some continuous functions 𝜓𝑖 (𝑥𝑖+1, . . . , 𝑥𝑑), so its Jacobian 𝜕𝜓(x)/𝜕x 𝑗 with respect to
the basis (b1, . . . , b𝑑) is upper triangular with diagonal (𝜆1/2, . . . , 𝜆𝑑/2). Therefore

vol𝜓(𝐾) = 𝜆1 · · · 𝜆𝑑
2𝑑

vol𝐾. (7.3)

For any distinct points x =
∑
𝑥𝑖b𝑖, y =

∑
𝑦𝑖b𝑖 in 𝐾 , let 𝑘 be the largest index such that

𝑥𝑘 ≠ 𝑦𝑘 . Then 𝜙𝑖 (x) agrees with 𝜙𝑖 (y) for all 𝑖 > 𝑘 . So

𝜓(x) − 𝜓(y) =
𝑑∑︁
𝑗=1

(𝜆 𝑗 − 𝜆 𝑗−1)
(
𝜙 𝑗 (x) − 𝜙 𝑗 (y)

2

)

=
𝑘∑︁
𝑗=1

(𝜆 𝑗 − 𝜆 𝑗−1)
(
𝜙 𝑗 (x) − 𝜙 𝑗 (y)

2

)
∈

𝑘∑︁
𝑗=1

(𝜆 𝑗 − 𝜆 𝑗−1)𝐾 = 𝜆𝑘𝐾.

The ∈ step is due to 𝐾 being centrally symmetric and convex. The coefficient of b𝑘 in
(𝜓(x) − 𝜓(y)) is 𝜆𝑘 (𝑥𝑘 − 𝑦𝑘)/2 ≠ 0. So 𝜓(x) − 𝜓(y) ∉ spanR{b1, b2, . . . b𝑘−1}. But we
just saw that 𝜓(x) − 𝜓(y) ∈ 𝜆𝑘𝐾 Recall that 𝐾 is open, and also 𝜆𝑘𝐾 ∩ Λ is contained in
spanR{b1, b2, . . . b𝑘−1}. Thus 𝜓(x) − 𝜓(y) ∉ Λ.

So 𝜓(𝐾) contains no two points separated by a nonzero lattice vector. By Blichfeldt’s
theorem (Theorem 7.9.6), we deduce vol𝜓(𝐾) ≤ detΛ. Combined with (7.3), we deduce

𝜆1 · · · 𝜆𝑑 vol𝐾 ≤ 2𝑑 vol𝜓(𝐾) ≤ 2𝑑 detΛ. □

7.10 Finding a GAP in a Bohr Set
Now we use Minkowski’s second theorem to prove that a Bohr set of low dimension contains
a large GAP.
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Theorem 7.10.1 (Large GAP in a Bohr set)
Let 𝑁 be a prime. Every Bohr set of dimension 𝑑 and width 𝜀 ∈ (0, 1) in Z/𝑁Z contains
a proper GAP with dimension at most 𝑑 and volume at least (𝜀/𝑑)𝑑 𝑁 .

Proof. Let 𝑅 = {𝑟1, . . . , 𝑟𝑑} ⊆ Z/𝑁Z. Recall that

Bohr(𝑅, 𝜀) = {
𝑥 ∈ Z/𝑁Z : ∥𝑥𝑟/𝑁 ∥R/Z ≤ 𝜀 for all 𝑟 ∈ 𝑅}

.

Let
𝑣 =

( 𝑟1

𝑁
, . . . ,

𝑟𝑑
𝑁

)
.

Thus for each 𝑥 = 0, 1, . . . , 𝑁 − 1, we have 𝑥 ∈ Bohr(𝑅, 𝜀) if and only if some element of
𝑥𝑣 + Z𝑑 lies in [−𝜀, 𝜀]𝑑 .

Let
Λ = Z𝑑 + Z𝑣 ⊆ R𝑑

be a lattice consisting of all points in R𝑑 that are congruent mod 1 to some integer multiple of
𝑣. Note det(Λ) = 1/𝑁 since there are exactly 𝑁 points of Λ within each translate of the unit
cube. We consider the convex body 𝐾 = [−𝜀, 𝜀]𝑑 . Let 𝜆1, . . . , 𝜆𝑑 be the successive minima
of 𝐾 with respect to Λ. Let b1, . . . , b𝑑 be the directional basis. We know

∥b 𝑗 ∥∞ ≤ 𝜆 𝑗𝜀 for all 𝑗 .

For each 1 ≤ 𝑗 ≤ 𝑑, let 𝐿 𝑗 = ⌈1/(𝜆 𝑗𝑑)⌉. If 0 ≤ 𝑙 𝑗 < 𝐿 𝑗 then

∥𝑙 𝑗b 𝑗 ∥∞ < 𝜀

𝑑
.

If we have integers 𝑙1, . . . , 𝑙𝑑 with 0 ≤ 𝑙𝑖 < 𝐿𝑖 for all 𝑖 then

∥𝑙1b1 + · · · + 𝑙𝑑b𝑑 ∥∞ ≤ 𝜀.
For each 1 ≤ 𝑗 ≤ 𝑑, there is some 0 ≤ 𝑥 𝑗 < 𝑁 so that b 𝑗 ∈ 𝑥 𝑗𝑣 + Z𝑑 , so its 𝑖th coordinate
lies in 𝑥𝑖𝑟𝑖/𝑁 + Z𝑑 . The 𝑖th coordinate in the above 𝐿∞ bound gives (𝑙1𝑥1 + · · · + 𝑙𝑑𝑥𝑑)𝑟𝑖

𝑁


R/Z
≤ 𝜀 for all 𝑖.

Thus, the GAP

𝑙1𝑥1 + · · · + 𝑙𝑑𝑥𝑑 , 0 ≤ 𝑙𝑖 < 𝐿𝑖 for each 1 ≤ 𝑖 ≤ 𝑑
is contained in Bohr(𝑅, 𝜀). It remains to show that this GAP is large and proper. It volume
is, applying Minkowski’s second theorem,

𝐿1 · · · 𝐿𝑘 ≥ 1
𝜆1 · · · 𝜆𝑑 · 𝑑𝑑 ≥

vol(𝐾)
2𝑑 det(Λ)𝑑𝑑 =

(2𝜀)𝑑
2𝑑 (1/𝑁)𝑑𝑑 =

( 𝜀
𝑑

)𝑑
𝑁.

Now we check that the GAP is proper. It suffices to show that if

𝑙1𝑥1 + · · · + 𝑙𝑑𝑥𝑑 ≡ 𝑙′1𝑥1 + · · · + 𝑙′𝑑𝑥𝑑 (mod 𝑁),
then we must have 𝑙𝑖 = 𝑙′𝑖 for all 𝑖. Setting

b = (𝑙1 − 𝑙′1)b1 + · · · + (𝑙𝑑 − 𝑙′𝑑)b𝑑 ,
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we have b ∈ Z𝑑 . Furthermore

∥b∥∞ ≤
𝑑∑︁
𝑖=1

1
𝜆𝑖𝑑
∥b𝑖 ∥∞ ≤ 𝜀 < 1,

so actually b must be 0. Since 𝑏1, . . . , 𝑏𝑑 is a basis we must have 𝑙𝑖 = 𝑙′𝑖 for all 𝑖, as desired. □

7.11 Proof of Freiman’s Theorem
We are now ready to prove Freiman’s theorem by putting together all the ingredients in this
chapter. Let us recall what we have proved.

• Plünnecke’s inequality (Theorem 7.3.1): |𝐴 + 𝐴| ≤ 𝐾 |𝐴| implies |𝑚𝐴 − 𝑛𝐴| ≤
𝐾𝑚+𝑛 |𝐴| for all 𝑚, 𝑛 ≥ 0.

• Ruzsa covering lemma (Theorem 7.4.1): if |𝑋 + 𝐵| ≤ 𝐾 |𝐵|, then there exist some
𝑇 ⊆ 𝑋 with |𝑇 | ≤ 𝐾 such that 𝑋 ⊆ 𝑇 + 𝐵 − 𝐵.
• Ruzsa modeling lemma (Theorem 7.7.3): if 𝐴 ⊆ Z and |𝑠𝐴 − 𝑠𝐴| ≤ 𝑁 , then there

exists 𝐴′ ⊆ 𝐴 with |𝐴′ | ≥ |𝐴| /𝑠 such that 𝐴′ is Freiman 𝑠-isomorphic to a subset of
Z/𝑁Z.
• Bogolyubov’s lemma (Theorem 7.8.5): for every 𝐴 ⊆ Z/𝑁Z with |𝐴| = 𝛼𝑁 , 2𝐴 − 2𝐴

contains some Bohr set with dimension < 1/𝛼2 and width 1/4.
• By a geometry of numbers argument (Theorem 7.10.1), for every prime 𝑁 , every Bohr

set of dimension 𝑑 and width 𝜀 ∈ (0, 1) contains a proper GAP with dimension ≤ 𝑑
and volume ≥ (𝜀/𝑑)𝑑𝑁 .

Now we will prove Freiman’s theorem. We restate it below with the bounds that we will
prove.

Theorem 7.11.1 (Freiman’s theorem)
Let 𝐴 ⊆ Z be a finite set satisfying |𝐴 + 𝐴| ≤ 𝐾 |𝐴|. Then 𝐴 is contained in a GAP
of dimension at most 𝑑 (𝐾) and volume at most 𝑓 (𝐾) |𝐴|, where 𝑑 (𝐾) ≤ exp(𝐾𝐶) and
𝑓 (𝐾) ≤ exp(exp(𝐾𝐶)) for some absolute constant 𝐶.

Proof. By Plünnecke’s theorem, we have |8𝐴 − 8𝐴| ≤ 𝐾16 |𝐴|. Let 𝑁 be a prime with
𝐾16 |𝐴| ≤ 𝑁 ≤ 2𝐾16 |𝐴| (it exists by Bertrand’s postulate). By Ruzsa modeling lemma, some
𝐴′ ⊆ 𝐴 with |𝐴′ | ≥ |𝐴| /8 is Freiman 8-isomorphic to a subset 𝐵 of Z/𝑁Z.

Applying Bogolyubov’s lemma on 𝐵 ⊆ Z/𝑁Z, with

𝛼 =
|𝐵 |
𝑁

=
|𝐴′ |
𝑁
≥ |𝐴|

8𝑁
≥ 1

16𝐾16 ,

we deduce that 2𝐵 − 2𝐵 contains a Bohr set with dimension < 256𝐾32 and width 1/4. By
Theorem 7.10.1, 2𝐵 − 2𝐵 contains a proper GAP with dimension 𝑑 < 256𝐾32 and volume
≥ (4𝑑)−𝑑𝑁 .

Since 𝐵 is Freiman 8-isomorphic to 𝐴′, 2𝐵 − 2𝐵 is Freiman 2-isomorphic to 2𝐴′ − 2𝐴′
(why?). Note GAPs are preserved by Freiman 2-isomorphisms (why?). Hence, the proper
GAP in 2𝐵 − 2𝐵 is mapped to a proper GAP 𝑄 ⊆ 2𝐴′ − 2𝐴′ with the same dimension (≤ 𝑑)
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and volume (≥ (4𝑑)−𝑑𝑁). We have

|𝐴| ≤ 8 |𝐴′ | ≤ 8𝑁 ≤ 8(4𝑑)𝑑 |𝑄 | .
Since 𝑄 ⊆ 2𝐴′ − 2𝐴′ ⊆ 2𝐴 − 2𝐴, we have 𝑄 + 𝐴 ⊆ 3𝐴 − 2𝐴. By Plünnecke’s inequality,

|𝑄 + 𝐴| ≤ |3𝐴 − 2𝐴| ≤ 𝐾5 |𝐴| ≤ 8𝐾5(4𝑑)𝑑 |𝑄 | .
By the Ruzsa covering lemma, there exists a subset 𝑋 of 𝐴 with |𝑋 | ≤ 8𝐾5(4𝑑)𝑑 such that
𝐴 ⊆ 𝑋 +𝑄 −𝑄. It remains to contain 𝑋 +𝑄 −𝑄 in a GAP.

By using two elements in each direction, 𝑋 is contained in a GAP of dimension |𝑋 | − 1
and volume ≤ 2 |𝑋 |−1. Since 𝑄 is a proper GAP with dimension 𝑑 < 256𝐾32 and volume
≤ |2𝐴 − 2𝐴| ≤ 𝐾4 |𝐴|,𝑄 −𝑄 is a GAP with dimension 𝑑 and volume ≤ 2𝑑𝐾4 |𝐴|. It follows
that 𝐴 ⊆ 𝑋 +𝑄 −𝑄 is contained in a GAP with

dimension ≤ |𝑋 | − 1 + 𝑑 ≤ 8(4𝑑)𝑑𝐾5 + 𝑑 − 1 = 𝑒𝐾
𝑂 (1)

(recall 𝑑 < 256𝐾32) and

volume ≤ 2 |𝑋 |−1+𝑑𝐾4 |𝐴| = 𝑒𝑒𝐾𝑂 (1) |𝐴| . □

The following exercise asks to improve the quantitative bounds on Freiman’s theorem.

Exercise 7.11.2 (Improved bounds on Freiman’s theorem). Using a more efficient cov-
ering lemma from Exercise 7.4.3, prove Freiman’s theorem with 𝑑 (𝐾) = 𝐾𝑂 (1) and
𝑓 (𝐾) = exp(𝐾𝑂 (1) ).

7.12 Polynomial Freiman–Ruzsa Conjecture
Here we explain one of the biggest open problems in additive combinatorics, known as
the polynomial Freiman–Ruzsa conjecture (PFR). As mentioned in Remark 7.1.11, nearly
optimal bounds 𝑓 (𝐾) = 𝐾1+𝑜 (1) and 𝑑 (𝐾) = exp(𝐾1+𝑜 (1) ) are known for Freiman’s theo-
rem. However, one can reformulate Freiman’s theorem with significantly better quantitative
dependencies.

PFR in the Finite Field Model
Let us first explain what happens in the finite field model F𝑛2 . Theorem 7.5.1 showed that if
𝐴 ⊆ F𝑛2 has |𝐴 + 𝐴| ≤ 𝐾 |𝐴|, then 𝐴 is contained in a subspace of cardinality ≤ 𝑓 (𝐾) |𝐴|. As
mentioned in Remark 7.5.2, the optimal constant is known and satisfies 𝑓 (𝐾) = Θ(22𝐾/𝐾).
An example requiring this bound is 𝐴 ⊆ F𝑚+𝑛 defined by 𝐴 = {𝑒1, . . . , 𝑒𝑛} × F𝑚2 (where
𝑒1, . . . , 𝑒𝑛 are the coordinate basis vectors of F𝑛2 ). Here 𝐾 = |𝐴 + 𝐴| /|𝐴| ∼ 𝑛/2 and |⟨𝐴⟩| =
(2𝑛/𝑛) |𝐴|. However, instead of trying to cover 𝐴 by a single subspace, we can easy cover
𝐴 by a small number of translates of a subspace with size comparable to 𝐴, namely 𝐴 is
covered by {𝑒1} × F𝑚2 , . . . , {𝑒𝑛} × F𝑚2 , which are translates of each other and each has size
≤ |𝐴|.

The Polynomial Freiman–Ruzsa conjecture in F𝑛2 proposes a variant of Freiman’s theorem
with polynomial bounds, where we are only required to cover a large fraction of 𝐴. Ruzsa
(1999) attributes the conjecture to Marton.
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Conjecture 7.12.1 (Polynomial Freiman–Ruzsa in F𝑛2 )
If 𝐴 ⊆ F𝑛2 , and |𝐴 + 𝐴| ≤ 𝐾 |𝐴|, then there exists a subspace 𝑉 ⊆ F𝑛2 with |𝑉 | ≤ |𝐴| such
that 𝐴 can be covered by 𝐾𝑂 (1) cosets of 𝑉 .

The best current result says that in Conjecture 7.12.1 one can cover 𝐴 by exp((log𝐾)𝑂 (1) )
cosets of 𝑉 (Sanders 2012). This is called a quasipolynomial bound.

This conjecture has several equivalent forms. Here we give some highlights. For more
details, including proofs of equivalence, see the online note accompanying Green (2005c)
titled Notes on the Polynomial Freiman–Ruzsa Conjecture.

For example, here is a formulation where we just need to use one subspace to cover a large
fraction of 𝐴.

Conjecture 7.12.2 (Polynomial Freiman–Ruzsa in F𝑛2 )
If 𝐴 ⊆ F𝑛2 , and |𝐴 + 𝐴| ≤ 𝐾 |𝐴|, then there exists an affine subspace 𝑉 ⊆ F𝑛2 with
|𝑉 | ≤ |𝐴| such that |𝑉 ∩ 𝐴| ≥ 𝐾−𝑂 (1) |𝐴|.

Proof of equivalence of Conjecture 7.12.1 and Conjecture 7.12.2. Conjecture 7.12.1 im-
plies Conjecture 7.12.2 since by the pigeonhole principle, at least one of the cosets of 𝑉
covers ≥ 𝐾−𝑂 (1) fraction of 𝐴.

Now assume Conjecture 7.12.2. Let 𝐴 ⊆ F𝑛2 with |𝐴 + 𝐴| ≤ 𝐾 |𝐴|. Let 𝑉 be as in
Conjecture 7.12.2. By the Ruzsa covering lemma (Theorem 7.4.1) with 𝑋 = 𝐴 and 𝐵 = 𝑉∩𝐴
we find 𝑇 ⊆ 𝑋 with |𝑇 | ≤ |𝑋 + 𝐵| /|𝑋 | ≤ |𝐴 + 𝐴| /|𝐴| ≤ 𝐾 such that 𝐴 ⊆ 𝑇 +𝐵−𝐵 ⊆ 𝑇 +𝑉 .
The conclusion of Conjecture 7.12.1 holds. □

Here is another attractive equivalent formulation of the polynomial Freiman–Ruzsa con-
jecture in F𝑛2 .

Conjecture 7.12.3 (Polynomial Freiman–Ruzsa in F𝑛2 )
If 𝑓 : F𝑛2 → F𝑛2 satisfies��{ 𝑓 (𝑥, 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦) : 𝑥, 𝑦 ∈ F𝑛2 }

�� ≤ 𝐾,
then there exists a linear function 𝑔 : F𝑛2 → F𝑛2 such that��{ 𝑓 (𝑥) − 𝑔(𝑥) : 𝑥 ∈ F𝑛2 }

�� ≤ 𝐾𝑂 (1) .
In Conjecture 7.12.3, it is straightforward to show a bound of 2𝐾 instead of 𝐾𝑂 (1) , since

we can extend 𝑓 to a linear function based on its values at some basis.
To state our third reformulation, we need the notion of the Gowers uniformity norm. Given

a finite abelian group Γ, and 𝑓 : Γ→ C, define the 𝑼3 uniformity norm of 𝑓 by

∥ 𝒇 ∥𝑼3 B

(
E𝑥,𝑦1 ,𝑦2 ,𝑦3 𝑓 (𝑥) 𝑓 (𝑥 + 𝑦1) 𝑓 (𝑥 + 𝑦2) 𝑓 (𝑥 + 𝑦3)·

· 𝑓 (𝑥 + 𝑦1 + 𝑦2) 𝑓 (𝑥 + 𝑦1 + 𝑦3) 𝑓 (𝑥 + 𝑦2 + 𝑦3) 𝑓 (𝑥 + 𝑦1 + 𝑦2 + 𝑦3)
)1/8

.

The 𝑈3 norm plays a central role in Gowers’ proof of Szemerédi’s theorem for 4-APs (the
𝑈3 norm is also discussed in Exercise 6.2.14).
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If 𝑓 : F𝑛2 → {−1, 1} given by 𝑓 (𝑥) = (−1)𝑞 (𝑥 ) where 𝑞 is a quadratic polynomial in 𝑛
variables over F2 (e.g., 𝑥1 + 𝑥1𝑥2 + · · · ), then it is not hard to check that the expression in
the expectation above is identically 1 (it comes from taking three finite differences of 𝑞).
So ∥ 𝑓 ∥𝑈3 = 1. For proving Szemerédi’s theorem for 4-APs, one would like a “1% inverse
result” showing that any 𝑓 : F𝑛2 → [−1, 1] satisfying ∥ 𝑓 ∥𝑈3 ≥ 𝛿 must correlates with some
quadratic polynomial phase function (−1)𝑞 (𝑥 ) . Such a result is known but it remains open
to find optimal quantitative bounds. The polynomial Freiman–Ruzsa conjecture in F𝑛2 is
equivalent to a𝑈3 inverse statement with polynomial bounds (Green and Tao 2010b; Lovett
2012).

Conjecture 7.12.4 (𝑈3 inverse with polynomial bounds)
If 𝑓 : F𝑛2 → Cwith ∥ 𝑓 ∥∞ ≤ 1 and ∥ 𝑓 ∥𝑈3

≥ 1/𝐾 , then there exists a quadratic polynomial
𝑞(𝑥1, . . . , 𝑥𝑛) over F2 such that��E𝑥∈F𝑛2 𝑓 (𝑥) (−1)𝑞 (𝑥 )

�� ≥ 𝐾−𝑂 (1) .
Remark 7.12.5 (Quantitative equivalence). It is known that the bounds in each of the
above conjectures are equivalent to each other up to a polynomial change. This means that
if one statement is true with conclusion ≤ 𝑓 (𝐾) then all the other statements are true with
conclusion ≤ 𝐶 𝑓 (𝐾)𝐶 (appropriately interpreted) with some absolute constant 𝐶.

PFR in the Integers
Now we formulate the polynomial Freiman–Ruzsa conjecture in Z instead of F𝑛2 . It is not
enough to use GAPs (Lovett and Regev 2017). Instead, we need to consider convex progres-
sions.

Z2

−→

Z

Definition 7.12.6 (Convex progression)
A centered convex progression in an abelian group Γ is defined to be an affine map

𝜙 : Z𝑑 ∩ 𝐵→ Γ

where 𝐵 is a centrally symmetric convex body. We define its dimension to be 𝑑 and its
volume to be |Z𝑑 ∩ 𝐵|.

Conjecture 7.12.7 (Polynomial Freiman–Ruzsa conjecture in Z)
If 𝐴 ⊆ Z satisfies |𝐴 + 𝐴| ≤ 𝐾 |𝐴|, then one can cover 𝐴 using 𝐾𝑂 (1) translates of some
centered convex progression of dimension 𝑂 (log𝐾) and volume at most |𝐴|.
More generally, one can formulate the polynomial Freiman–Ruzsa conjecture in an arbi-

trary abelian group.
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Definition 7.12.8 (Centered convex coset progression)
In an abelian group, a centered convex coset progression is a set of the form 𝑃 + 𝐻,
where 𝑃 is a centered convex progression and 𝐻 is a subgroup. Its dimension is defined
to be the dimension of 𝑃, and is volume is defined to be |𝐻 | vol 𝑃.

Conjecture 7.12.9 (Polynomial Freiman–Ruzsa conjecture in abelian groups)
If 𝐴 is a finite subset of an abelian group satisfying |𝐴 + 𝐴| ≤ 𝐾 |𝐴|, then one can cover 𝐴
using 𝐾𝑂 (1) translates of some centered convex coset progression of dimension𝑂 (log𝐾)
and volume at most |𝐴|.

For both Conjecture 7.12.7 and Conjecture 7.12.9, the best current result uses exp((log𝐾)𝑂 (1) )
translates and dimension bound (log𝐾)𝑂 (1) (Sanders 2012, 2013).

7.13 Additive Energy and the Balog–Szemerédi–Gowers Theorem
We introduce a new way of measuring additive structure by counting the number of solutions
to the equation 𝑎 + 𝑏 = 𝑐 + 𝑑.

Definition 7.13.1 (Additive energy)
Let 𝐴 be a finite set in an abelian group. Its additive energy is defined to be

𝑬(𝑨) B |{(𝑎, 𝑏, 𝑐, 𝑑) ∈ 𝐴 × 𝐴 × 𝐴 × 𝐴 : 𝑎 + 𝑏 = 𝑐 + 𝑑}| .

Remark 7.13.2. The additive energy of 𝐴 counts 4-cycles in the bipartite Cayley graph with
generating set 𝐴. It is called an “energy” since we can write it as an 𝐿2 quantity

𝐸 (𝐴) =
∑︁
𝑥

𝑟𝐴(𝑥)2

where
𝒓𝑨(𝒙) B |{(𝑎, 𝑏) ∈ 𝐴 × 𝐴 : 𝑎 + 𝑏 = 𝑥}|

is the number of ways to write 𝑥 as the sum of two elements of 𝐴.

We have the easy bound

2 |𝐴|2 − |𝐴| ≤ 𝐸 (𝐴) ≤ |𝐴|3 .
The lower bound is due to trivial solutions 𝑎 + 𝑏 = 𝑎 + 𝑏 and 𝑎 + 𝑏 = 𝑏 + 𝑎. The lower bound
is tight for sets without nontrivial solutions to 𝑎 + 𝑏 = 𝑐 + 𝑑. The upper bound is due to 𝑑
being determined by 𝑎, 𝑏, 𝑐 when 𝑎 + 𝑏 = 𝑐 + 𝑑. It is tight when 𝐴 is a subgroup.

Here is the main question we explore in this section.

Question 7.13.3
What is the relationship between small doubling and large additive energy? (Both encode
some notion of “lots of additive structure.”)

One direction is easy.
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Proposition 7.13.4 (Small doubling implies large additive energy)
Let 𝐴 be a finite subset of an abelian group satisfying |𝐴 + 𝐴| ≤ 𝐾 |𝐴|. Then

𝐸 (𝐴) ≥ |𝐴|
3

𝐾
.

Proof. Using 𝑟𝐴(𝑥) from Remark 7.13.2, By the Cauchy–Schwarz inequality

𝐸 (𝐴) =
∑︁
𝑥∈𝐴+𝐴

𝑟𝐴(𝑥)2 ≥ 1
|𝐴 + 𝐴|

( ∑︁
𝑥∈𝐴+𝐴

𝑟𝐴(𝑥)
)2

=
|𝐴|4
|𝐴 + 𝐴| ≥

|𝐴|3
𝐾
. □

The next example shows that the converse does not hold.

Example 7.13.5 (Large additive energy does not imply small doubling). The set

𝐴 = [𝑁] ∪ {
2𝑁 + 1, 2𝑁 + 2, . . . , 2𝑁 + 2𝑁

}
is the union of a set of small doubling and a set without no additive structure. The first
component has large additive energy, and so 𝐸 (𝐴) = Θ(𝑁3). On the other hand, the second
component gives large doubling |𝐴 + 𝐴| = Θ(𝑁2).

However, we do have a converse if we allow passing to large subsets. Balog and Szemerédi
(1994) showed that every set with large additive energy must contain a large subset with small
doubling. Their proof used the regularity method, which required tower-type dependencies
on the bounds. Gowers (2001) gave a new proof with much better bounds, and this result
played a key role in his work on a new proof of Szemerédi’s theorem. We will see Gowers’
proof here. The presentation stems from Sudakov, Szemerédi, and Vu (2005).

Theorem 7.13.6 (Balog–Szemerédi–Gowers theorem)
Let 𝐴 be a finite subset of an abelian group satisfying

𝐸 (𝐴) ≥ |𝐴|3 /𝐾.
Then there is a subset 𝐴′ ⊆ 𝐴 with

|𝐴′ | ≥ 𝐾−𝑂 (1) |𝐴| and |𝐴′ + 𝐴′ | ≤ 𝐾𝑂 (1) |𝐴′ | .

We will prove a version of the theorem allowing two different sets. Given two finite sets
𝐴 and 𝐵 in an abelian group, define their additive energy to be

𝑬(𝑨, 𝑩) B |{(𝑎, 𝑏, 𝑎′, 𝑏′) ∈ 𝐴 × 𝐵 × 𝐴 × 𝐵 : 𝑎 + 𝑏 = 𝑎′ + 𝑏′}| .
Then 𝐸 (𝐴, 𝐴) = 𝐸 (𝐴).

Theorem 7.13.7 (Balog–Szemerédi–Gowers theorem)
Let 𝐴 and 𝐵 be finite subsets of the same abelian group. If |𝐴| , |𝐵| ≤ 𝑛 and

𝐸 (𝐴, 𝐵) ≥ 𝑛3/𝐾,
then there exist subsets 𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵 with

|𝐴′ | , |𝐵′ | ≥ 𝐾−𝑂 (1)𝑛 and |𝐴′ + 𝐵′ | ≤ 𝐾𝑂 (1)𝑛.
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Proof that Theorem 7.13.7 implies Theorem 7.13.6. Suppose𝐸 (𝐴) ≥ |𝐴|3 /𝐾 . Apply The-
orem 7.13.7 with 𝐵 = 𝐴 to obtain 𝐴′, 𝐵′ ⊆ 𝐴 with |𝐴′ | , |𝐵′ | ≥ 𝐾−𝑂 (1) |𝐴| and |𝐴′ + 𝐵′ | ≤
𝐾𝑂 (1) |𝐴|. Then by Corollary 7.3.6, a variant of the Ruzsa triangle inequality, we have

|𝐴′ + 𝐴′ | ≤ |𝐴
′ + 𝐵′ |2
|𝐵′ | ≤ 𝐾𝑂 (1) |𝐴| . □

We will prove Theorem 7.13.7 by setting up a graph.

Definition 7.13.8 (Restricted sumset)
Let 𝐴 and 𝐵 be subsets of an abelian group and let 𝐺 be a bipartite graph with vertex
bipartition 𝐴 ∪ 𝐵. We define the restricted sumset 𝐴 +𝐺 𝐵 to be the set of sums along
edges of 𝐺:

𝑨 +𝑮 𝑩 B {𝑎 + 𝑏 : (𝑎, 𝑏) ∈ 𝐴 × 𝐵 is an edge in 𝐺}.

Here is a graphical version of the Balog–Szemerédi–Gowers theorem.

Theorem 7.13.9 (Graph BSG)
Let 𝐴 and 𝐵 be finite subsets of an abelian group and let 𝐺 be a bipartite graph with
vertex bipartition 𝐴 ∪ 𝐵. If |𝐴| , |𝐵| ≤ 𝑛,

𝑒(𝐺) ≥ 𝑛
2

𝐾
and |𝐴 +𝐺 𝐵| ≤ 𝐾𝑛,

then there exist subsets 𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵 with

|𝐴′ | , |𝐵′ | ≥ 𝐾−𝑂 (1)𝑛 and |𝐴′ + 𝐵′ | ≤ 𝐾𝑂 (1)𝑛.

Proof that Theorem 7.13.9 implies Theorem 7.13.7. Denote the number of ways to write 𝑥
as 𝑎 + 𝑏 by

𝒓𝑨,𝑩(𝒙) B |{(𝑎, 𝑏) ∈ 𝐴 × 𝐵 : 𝑎 + 𝑏 = 𝑥}| .
Consider the “popular sums”

𝑆 =
{
𝑥 ∈ 𝐴 + 𝐵 : 𝑟𝐴,𝐵 (𝑥) ≥ 𝑛

2𝐾

}
.

Build a bipartite graph 𝐺 with bipartition 𝐴 ∪ 𝐵 such that (𝑎, 𝑏) ∈ 𝐴 × 𝐵 is an edge if and
only if 𝑎 + 𝑏 ∈ 𝑆.

We claim that 𝐺 has many edges, by showing that “unpopular sums” account for at most
half of 𝐸 (𝐴, 𝐵). Note that

𝑛3

𝐾
≤ 𝐸 (𝐴, 𝐵) =

∑︁
𝑥∈𝑆

𝑟𝐴,𝐵 (𝑥)2 +
∑︁
𝑥∉𝑆

𝑟𝐴,𝐵 (𝑥)2. (7.4)

Because 𝑟𝐴,𝐵 (𝑥) < 𝑛/(2𝐾) when 𝑥 ∉ 𝑆, we can bound the second term as∑︁
𝑥∉𝑆

𝑟𝐴,𝐵 (𝑥)2 ≤ 𝑛

2𝐾

∑︁
𝑥∉𝑆

𝑟𝐴,𝐵 (𝑥) ≤ 𝑛

2𝐾
|𝐴| |𝐵 | ≤ 𝑛3

2𝐾
,
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and setting back into (7.4) yields

𝑛3

𝐾
≤

∑︁
𝑥∈𝑆

𝑟𝐴,𝐵 (𝑥)2 + 𝑛
3

2𝐾
,

and so ∑︁
𝑥∈𝑆

𝑟𝐴,𝐵 (𝑥)2 ≥ 𝑛3

2𝐾
.

Moreover, because 𝑟𝐴,𝐵 (𝑥) ≤ |𝐴| ≤ 𝑛 for all 𝑥, it follows that

𝑒(𝐺) =
∑︁
𝑥∈𝑆

𝑟𝐴,𝐵 (𝑥) ≥
∑︁
𝑥∈𝑆

𝑟𝐴,𝐵 (𝑥)2
𝑛

≥ 𝑛2

2𝐾
.

Furthermore, 𝐴 +𝐺 𝐵 ⊆ 𝑆,
𝑛

2𝐾
|𝐴 +𝐺 𝐵| ≤ |𝐴| |𝐵| ≤ 𝑛2,

so |𝐴 +𝐺 𝐵| ≤ 2𝐾𝑛. Hence, we can apply Theorem 7.13.9 to find sets 𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵
with the desired properties. □

Proof of Graph BSG
The remainder of this section will focus on proving BSG (Theorem 7.13.9). We begin with
a few lemmas.

Lemma 7.13.10 (Path of length 2 lemma)
Let 𝛿, 𝜀 > 0. Let𝐺 be a bipartite graph with vertex bipartition 𝐴∪𝐵 and at least 𝛿 |𝐴| |𝐵|
edges. Then there is some 𝑈 ⊆ 𝐴 with |𝑈 | ≥ 𝛿 |𝐴| /2 such that at least (1 − 𝜀)-fraction
of the pairs (𝑥, 𝑦) ∈ 𝑈2 have at least 𝜀𝛿2 |𝐵| /2 neighbors common to 𝑥 and 𝑦.

The proof uses the dependent random choice technique from Section 1.7. Instead of
quoting theorems from that section, let us prove the result from scratch.

𝑈

𝐴 𝐵

𝑣

𝑥
𝑦

Proof. Say that a pair (𝑥, 𝑦) ∈ 𝐴2 is “unfriendly” if it has < 𝜀𝛿2 |𝐵| /2 common neighbors.
Choose 𝑣 ∈ 𝐵 uniformly at random and let𝑈 = 𝑁 (𝑣) be its neighborhood in 𝑣. We have

E |𝑈 | = E |𝑁 (𝑣) | = 𝑒(𝐺)
|𝐵| ≥ 𝛿 |𝐴| .
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For each fixed pair (𝑥, 𝑦) ∈ 𝐴2, we have

P(𝑥, 𝑦 ∈ 𝑈) = P(𝑥, 𝑦 ∈ 𝑁 (𝑣)) = codeg(𝑥, 𝑦)
|𝐵| .

So if (𝑥, 𝑦) is unfriendly, then P(𝑥, 𝑦 ∈ 𝑈) < 𝜀𝛿2/2. Let 𝑋 be the number of unfriendly pairs
(𝑥, 𝑦) ∈ 𝑈2. Then

E𝑋 =
∑︁

(𝑥,𝑦) ∈𝐴2

unfriendly

P(𝑥, 𝑦 ∈ 𝑈) < 𝜀𝛿2

2
|𝐴|2 .

Hence, we have

E

[
|𝑈 |2 − 𝑋

𝜀

]
≥ (E |𝑈 |)2 − E𝑋

𝜀
>
𝛿2

2
|𝐴|2 .

So for some 𝑣 ∈ 𝐵,𝑈 = 𝑁 (𝑣) satisfies

|𝑈 |2 − 𝑋
𝜀
≥ 𝛿

2

2
|𝐴|2 .

Then this 𝑈 ⊆ 𝐴 satisfies |𝑈 |2 ≥ 𝛿2 |𝐴|2 /2, and so |𝑈 | ≥ 𝛿 |𝐴| /2. Moreover, we have
𝑋 ≤ 𝜀 |𝑈 |2, so at most 𝜀-fraction of pairs (𝑥, 𝑦) ∈ 𝑈2 are unfriendly. □

Lemma 7.13.11 (Path of length 3 lemma)
Let 𝛿 > 0. Let 𝐺 be a bipartite graph with vertex bipartition 𝐴 ∪ 𝐵 and at least 𝛿 |𝐴| |𝐵|
edges. Then there are subsets 𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵with |𝐴′ | ≥ 𝑐𝛿𝐶 |𝐴| and |𝐵′ | ≥ 𝑐𝛿𝐶 |𝐵|.
such that the number of 3-edge paths joining every pair (𝑎, 𝑏) ∈ 𝐴′ × 𝐵′ is at least
𝑐𝛿𝐶 |𝐴| |𝐵|. Here 𝑐, 𝐶 > 0 are absolute constants.

𝐴

𝐴1

𝐴2

𝐴′

𝐴

𝐵′

𝑎

𝑏

Proof. We repeatedly trim low-degree vertices.
Call a pair of vertices in 𝐴 “friendly” if they have ≥ 𝛿3 |𝐵| /20 common neighbors. Define

𝐴1 B

{
𝑎 ∈ 𝐴 : deg 𝑎 ≥ 𝛿

2
|𝐵 |

}
.

Since each vertex in 𝐴 \ 𝐴1 has < 𝛿 |𝐵| /2 neighbors, 𝑒(𝐴 \ 𝐴1, 𝐵) ≤ 𝛿 |𝐴| |𝐵| /2. So

𝑒(𝐴1, 𝐵) = 𝑒(𝐴, 𝐵) − 𝑒(𝐴 \ 𝐴1, 𝐵) ≥ 𝛿 |𝐴| |𝐵| − 𝛿2 |𝐴| |𝐵| ≥
𝛿

2
|𝐴| |𝐵| .
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Hence |𝐴1 | ≥ 𝛿 |𝐴| /2.
Construct 𝐴2 ⊆ 𝐴1 via the path of length 2 lemma (Lemma 7.13.10) on (𝐴1, 𝐵) with

𝜀 = 𝛿/10. Then, |𝐴2 | ≥ 𝛿 |𝐴1 | /2 ≥ 𝛿2 |𝐴| /4 and ≤ (𝛿/10)-fraction pairs of vertices in 𝐴2
are unfriendly.

Set

𝐵′ =

{
𝑏 ∈ 𝐵 : deg(𝑏, 𝐴2) ≥ 𝛿4 |𝐴2 |

}
.

Since each vertex in 𝐵 \ 𝐵′ has < 𝛿 |𝐴2 | /4 neighbors in 𝐴2, 𝑒(𝐴2, 𝐵 \ 𝐵′) ≤ 𝛿 |𝐴2 | |𝐵| /4.
Since every vertex in 𝐴1 has ≥ 𝛿 |𝐵| /2 neighbors in 𝐵, and 𝐴2 ⊆ 𝐴1, we have 𝑒(𝐴2, 𝐵) ≥
𝛿 |𝐴2 | |𝐵 | /2. Hence

𝑒(𝐴2, 𝐵
′) = 𝑒(𝐴2, 𝐵) − 𝑒(𝐴2, 𝐵 \ 𝐵′) ≥ 𝛿2 |𝐴2 | |𝐵| − 𝛿4 |𝐴2 | |𝐵| ≥ 𝛿4 |𝐴2 | |𝐵| .

Hence |𝐵′ | ≥ 𝛿 |𝐵| /4.
Let

𝐴′ = {𝑎 ∈ 𝐴2 : 𝑎 is friendly to ≥ (1 − 𝛿/5)-fraction of 𝐴2} .
Since ≤ (𝛿/10)-fraction of pairs of vertices in 𝐴2 are unfriendly, we have |𝐴′ | ≥ |𝐴2 | /2 ≥
𝛿2 |𝐴| /8.

We claim that that 𝐴′ and 𝐵′ satisfy the desired conclusions. Let (𝑎, 𝑏) ∈ 𝐴′×𝐵′. Because
𝑏 is adjacent to ≥ 𝛿 |𝐴2 | /4 vertices in 𝐴2 and 𝑎 is friendly to ≥ (1 − 𝛿/5) |𝐴2 | vertices in
𝐴2, there are ≥ 𝛿 |𝐴2 | /20 vertices in 𝐴2 both friendly to 𝑎 and adjacent to 𝑏. For each such
𝑎1 ∈ 𝐴2, there are ≥ 𝛿3 |𝐵| /20 vertices 𝑏1 ∈ 𝐵 for which 𝑎𝑏1𝑎1𝑏 is a path of length 3, so the
number of paths of length 3 from 𝑎 to 𝑏 is at least

𝛿

20
|𝐴2 | · 𝛿

3

20
|𝐵| ≥ 𝛿

20
· 𝛿

2

4
|𝐴| · 𝛿

3

20
|𝐵| ≥ 𝛿6

1600
|𝐴| |𝐵| .

Furthermore, recall that |𝐴′ | ≥ 𝛿2 |𝐴| /8 and |𝐵′ | ≥ 𝛿 |𝐵| /4. □

We can use the path of length 3 lemma to prove the graph-theoretic analogue of the
Balog–Szemerédi–Gowers theorem.

𝐴′

𝐴

𝑎1

𝑎

𝐵′

𝐵

𝑏1

𝑏

𝑥 = 𝑎 + 𝑏1

𝑦 =
𝑎 1+

𝑏 1

𝑧 = 𝑎1 + 𝑏

Proof of Theorem 7.13.9 (Graph BSG). Since 𝑒(𝐺) ≥ 𝑛2/𝐾 , we have |𝐴| , |𝐵| ≥ 𝑛/𝐾 . By
the path of length 3 lemma (Lemma 7.13.11), we can find 𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵 each with
size ≥ 𝐾−𝑂 (1)𝑛 such that for every (𝑎, 𝑏) ∈ 𝐴′ × 𝐵′, there are ≥ 𝐾−𝑂 (1)𝑛2 paths 𝑎𝑏1𝑎1𝑏 in
𝐺 with 𝑎1 ∈ 𝐴 and 𝑏1 ∈ 𝐵. Then, with

𝑥 = 𝑎 + 𝑏1, 𝑦 = 𝑎1 + 𝑏1, 𝑧 = 𝑎1 + 𝑏,
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we have
𝑎 + 𝑏 = 𝑥 − 𝑦 + 𝑧.

This shows that every element of 𝐴′ + 𝐵′ can be written as 𝑥 − 𝑦 + 𝑧 for some 𝑥, 𝑦, 𝑧 ∈ 𝐴+𝐺 𝐵
in ≥ 𝐾−𝑂 (1)𝑛2 ways. (For a given (𝑎, 𝑏) ∈ 𝐴′ × 𝐵′, these choices of 𝑥, 𝑦, 𝑧 are genuinely
distinct; why?) Thus

𝐾−𝑂 (1)𝑛2 |𝐴′ + 𝐵′ | ≤ |𝐴 +𝐺 𝐵|3 ≤ 𝐾3𝑛3.

Therefore |𝐴′ + 𝐵′ | ≤ 𝐾𝑂 (1)𝑛. □

Further Reading
See Ruzsa’s lecture notes Sumsets and Structure (2009) for a comprehensive introduction to
many topics related to set addition, including but not limited to Freiman’s theorem.

Sanders’ article The Structure of Set Addition Revisited (2013) provides a modern expo-
sition of Freiman’s theorem and his proof of the quasipolynomial Freiman–Ruzsa theorem.
Lovett’s article An Exposition of Sanders’ Quasi-Polynomial Freiman–Ruzsa Theorem (2015)
gives a gentle exposition of Sanders’ proof in F𝑛2 .

The methods discussed in this chapter play a central role in Gowers’ proof of Szemerédi’s
theorem. The proof for 4-APs is especially worth studying, It contains many beautiful ideas
and shows how these the topics in this chapter and the previous chapter are closely linked.
See the original paper by Gowers (1998a) on Szemerédi’s theorem for 4-APs as well as
excellent lecture notes by Gowers (1998b), Green (2009b), and Soundararajan (2007).
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Chapter Summary

• Freiman’s theorem. Every 𝐴 ⊆ Z with |𝐴 + 𝐴| ≤ 𝐾 |𝐴| is contained in a generalized
arithmetic progression (GAP) of dimension ≤ 𝑑 (𝐾) and volume ≤ 𝑓 (𝐾) |𝐴|.
– Informally: a set with small doubling is contained in a small GAP.
– Up to constants, this gives a complete characterization of integer sets with bounded

doubling.
• Rusza triangle inequality. |𝐴| |𝐵 − 𝐶 | ≤ |𝐴 − 𝐵| |𝐴 − 𝐶 |.
• Plünnecke’s inequality. |𝐴 + 𝐴| ≤ 𝐾 |𝐴| implies |𝑚𝐴 − 𝑛𝐴| ≤ 𝐾𝑚+𝑛 |𝐴|.
• Ruzsa covering lemma. Idea: take a maximally disjoint set of translates, and their expan-

sions must cover the entire space.
• Freiman’s theorem in groups with bounded exponent. A set with bounded doubling is

contained in a small subgroup.
• Freiman 𝑠-homomorphisms are maps preserving 𝑠-fold sums.
• Ruzsa modeling lemma. A set of integers with small doubling can be partially modeled

as a large fraction of a cyclic group via a Freiman isomorphism.
• Bogolyubov’s lemma. If 𝐴 is large, then 2𝐴 − 2𝐴 contains a large subspace (finite field

model) or GAP (cyclic group).
• A large Bohr set contains a large GAP. Proof uses Minkowski’s second theorem from

the geometry of numbers.
• Polynomial Freiman–Ruzsa conjeture: a central conjecture in additive combinatorics.

The finite field model version has several equivalent and attractive statements, one of
which says: if 𝐴 ⊆ F𝑛2 , and |𝐴 + 𝐴| ≤ 𝐾 |𝐴|, then 𝐴 can be covered using 𝐾𝑂 (1) translates
of some subspace with cardinality ≤ |𝐴|.

• The additive energy 𝐸 (𝐴) of a set 𝐴 is the number of solutions to 𝑎 + 𝑏 = 𝑐 + 𝑑 in 𝐴.
• Balog–Szemerédi–Gowers theorem. If 𝐸 (𝐴) ≥ |𝐴|3 /𝐾 , then 𝐴 has a subset 𝐴′ with
|𝐴′ | ≥ 𝐾−𝑂 (1) |𝐴| and |𝐴′ + 𝐴′ | ≤ 𝐾𝑂 (1) |𝐴′ |.
– Informally: a set with large additive energy contains a large subset with small doubling.
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