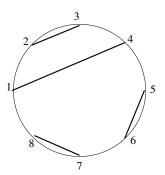
18.200 Homework 4

Instructions: Indicate your recitation and collaborators or state that you worked only on your own. In any case, you must write up your own proofs.

- 1. Consider the following game: n cards numbered 1 through n are dealt face down. Your goal is to guess the last card. To help you, a coin is flipped n-1 times, and if the ith coin flip is heads, the ith card is turned face up.
 - (a) What is the probability that you guess the card correctly (assuming you make a reasonable guess)?
 - (b) Conditioned on the event that you guess the card correctly, what is the probability, as a function of k that you flipped exactly k heads?
- 2. Consider 2n points on the plane labelled $1, 2, \dots, 2n$, all spaced equally on a circle. A matching of these points is a collection of n straight line segments, with every point being the endpoint of precisely one of the line segments. A matching is noncrossing if no two of its line segments cross. Here is an example of a noncrossing matching on 8 points (so n = 4).



Determine (with proof) the number of noncrossing matchings of 2n points, as a function of n. **Hint:** You might want to look for an appropriate bijection.

- 3. Let \mathcal{C} be the set of all sequences of letters $\{a, b, c, 1, 2\}$ where all the letters $\{a, b, c\}$ appear before all the letters $\{1, 2\}$. For instance, \mathcal{C} contains the sequences bacca211 and ab and 12 and aa221, but not the sequence bac2a11. Let c_n be the number of sequences of length n (n letters), and let $C(x) = \sum_{n=0}^{\infty}$ be the generating function for c_n .
 - (a) Determine an expression for C(x).
 - (b) Determine an explicit expression for c_n .

- 4. Suppose you have a sequence that satisfies the recurrence relation $f_k = f_{k-1} + 6f_{k-2}$, with $f_0 = 1$, $f_1 = 2$, $f_2 = 8$. Use generating functions to find a formula for f_k .
- 5. Find a recurrence relation for the number of ways of tiling a $3 \times n$ strip with tiles of size 2×1 (which may be rotated). A 3×2 strip can be tiled in three ways, and a 3×4 strip can be tiled in eleven ways. Note that this tiles exactly only for even n. Roughly how fast does this sequence grow?

(Note: you may want to use Mathematica or other software to evaluate the roots of a polynomial.)

18.200 Principles of Discrete Applied Mathematics Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.