Recitation 03

To-do list:

1. An example of a set without the Archimedean property.
2. Discussing the intuition behind open sets with examples.

Let's get into it. The Archimedean property states that for all $x, y \in \mathbb{R}$ such that $0<x<y$, there exists an $n \in \mathbb{N}$ such that $n x>y$. In other words, no real number is infinitely larger than any other real number. This property feels particularly trivial for the real numbers, but not all ordered sets have such a nice property. For instance, consider the set S of all polynomials with real valued coefficients. To write this formally, we state

$$
S=\left\{\sum_{i=0}^{n} a_{i} x^{i} \mid a_{i} \in \mathbb{R}, n \in \mathbb{N}\right\} .
$$

We can turn S into an ordered set by defining what it means for a polynomial to be "positive". For S, we will state that if $p(x)=\sum_{i=0}^{n} a_{i} x^{i}$ has $a_{n}>0$ then $p(x) \succ 0$. In other words, if the leading coefficient is positive, then $p(x) \succ 0$. Hence, $p(x) \succ g(x)$ if $p(x)-g(x) \succ 0$.

So the question is, does S satisfy the Achimedean property? Namely, if we are guven $p(x), g(x) \in S$ such that $g(x) \succ p(x) \succ 0$, does there exist an $n \in \mathbb{N}$ such that $n p(x) \succ g(x)$?

Consider the following example: Let $p(x)=10 x^{2}+5$ and $g(x)=x^{3}-3 x$. Both have positive leading coefficients, and thus both are "positive". Furthermore, $x^{3}-3 x \succ 10 x^{2}+5$ as $x^{3}-10 x^{2}-3 x-5 \succ 0$. Can we find an $n \in \mathbb{N}$ such that

$$
n\left(10 x^{2}+5\right) \succ x^{3}-3 x ?
$$

The answer is no, as $x^{3}-3 x-10 n x^{2}-5 n$ has a positive leading coefficient for all $n \in \mathbb{N}$. Therefore, S does not satisfy the Archimedian property. In some sense, $x^{3}-3 x$ is "infinitely larger" than $10 x^{2}+5$.

Now let's start to discuss open sets. A set $U \subset \mathbb{R}$ is open if for all $x \in U$ there exists an $\epsilon>0$ such that $(x-\epsilon, x+\epsilon) \subset U$. One example of this is the set $(0,1)$. For any number strictly between 0 and 1 , you can find some $\epsilon>0$ such that $(x-\epsilon, x+\epsilon) \subset(0,1)$:

Here, each dot is an x, and the circle around it is a circle of radius ϵ. Note that ϵ does not (and generally isn't) the same value for every x.

In the PSET, you will be asked to show that for $a, b \in \mathbb{R},(-\infty, a),(a, b)$, and (b, ∞) are open sets.
But what isn't an open set? Well, consider a set like $[0,1]$. Why isn't this an open set? For the point $1 \in[0,1]$, for all $\epsilon>0(1-\epsilon, 1+\epsilon) \not \subset[0,1]$.

In the PSET, you will be asked to show that an arbitrary union of open sets is open, and that a finite intersection of open sets is open. But why isn't an infinite intersection of open sets necessarily open? Here is a common counterexample.

Consider the sets of the form $U_{n}=\left(0,1+\frac{1}{n}\right)$ for $n \in \mathbb{N}$. Then, $U_{1}=(0,2), U_{2}=(0,1.5)$, etc.. It is clear that all of these sets are open, however

$$
\bigcap_{n \in \mathbb{N}} U_{n}=(0,1] .
$$

This set is NOT open, for the same reason that $[0,1]$ wasn't open. Hence, infinite intersections of open sets may NOT be open.

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

