18.100A: Complete Lecture Notes

Lecture 23:
Pointwise and Uniform Convergence of Sequences of Functions

Sequences of Function

Power Series

Remark 1. Power series motivate the general discussion of sequences of functions.

Definition 2 (Power series)

A power series about x_{0} is a series of the form

$$
\sum_{m=0}^{\infty} a_{m}\left(x-x_{0}\right)^{m}
$$

Theorem 3

Suppose

$$
R=\lim _{m \rightarrow \infty}\left|a_{m}\right|^{1 / n}
$$

exists, and let

$$
p= \begin{cases}\frac{1}{R} & R>0 \\ \infty & R=0\end{cases}
$$

Then, $\sum a_{m}\left(x-x_{0}\right)^{m}$ converges absolutely if $\left|x-x_{0}\right|<p$ and diverges if $\left|x-x_{0}\right|>p$.

Definition 4 (Radius of Convergence)

In the above theorem, we define p to be the radius of convergence.

Proof: We have

$$
\lim _{n \rightarrow \infty}\left|a_{m}\left(x-x_{0}\right)^{m}\right|^{1 / m}=R\left|x-x_{0}\right|
$$

and the theorem follows by the Root test.
Suppose $\sum a_{m}\left(x-x_{0}\right)^{m}$ is a power series with radius of convergence p. Furthermore, define $f:\left(x_{0}-p, x_{0}+p\right) \rightarrow \mathbb{R}$ such that

$$
f(x):=\sum_{m=0}^{\infty} a_{m}\left(x-x_{0}\right)^{m}
$$

Then, f is a limit of a sequence of functions

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)
$$

for $x \in\left(x_{0}-p, x_{0}+p\right)$ and where

$$
f_{n}(x)=\sum_{m=0}^{n} a_{m}\left(x-x_{0}\right)^{m}
$$

Example 5

For example, we have

$$
f(x)=\frac{1}{1-x}=\sum_{m=0}^{\infty} x^{m}
$$

Question 6. This concept begs a number of questions:

1. Is f continuous?
2. Is f differentiable, and does $f^{\prime}=\lim _{n \rightarrow \infty} f_{n}^{\prime}$?
3. If 1. is true, does

$$
\int_{a}^{b} f=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} ?
$$

These questions will be the key motivator for the last section of this course.

Pointwise and Uniform Convergence

We now consider a setting far more general than power series.
Definition 7 (Pointwise Convergence)
For $n \in \mathbb{N}$, let $f_{n}: S \rightarrow \mathbb{R}$. Let $f: S \rightarrow \mathbb{R}$. We say that $\left\{f_{n}\right\}$ converges pointwise to f if for all $x \in S$,

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x)
$$

Let's consider some examples.

1. Let $f_{n}(x)=x^{n}$ on $[0,1]$. Then,

$$
\lim _{n \rightarrow \infty} f_{n}(x)= \begin{cases}0 & x \in[0,1) \\ 1 & x=1\end{cases}
$$

Thus, $\left\{f_{n}\right\}$ converges to the above pointwise function. Hence, notice that a sequence of continuous functions may not converge pointwise to a continuous function!
2. Let $f_{n}(x)=\sum_{m=0}^{n} x^{m}$ for $x \in(-1,1)$. Then,

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \sum_{m=0}^{n} x^{m}=\frac{1}{1-x}
$$

Hence, pointwise, this sequence converges to its power series (see the above example).
3. Let $f_{n}(x):[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f_{n}(x)= \begin{cases}4 n^{2} x & x \in\left[0, \frac{1}{2 n}\right] \\ 4 n-4 n^{2} x & x \in\left[\frac{1}{2 n}, \frac{1}{n}\right] \\ 0 & x \in\left[\frac{1}{n}, 1\right]\end{cases}
$$

We can picture this sequence (on the next page)

Then, $\lim _{n \rightarrow \infty} f_{n}(0)=\lim _{n \rightarrow \infty} 0=0$. Let $x \in(0,1]$. Let $N \in \mathbb{N}$ such that $\frac{1}{N}<x$. Then, for all $n \geq N$,

$$
f_{n}(x)=0
$$

Therefore,

$$
\left\{f_{n}(x)\right\}=f_{1}(x), \ldots, f_{N-1}(x), 0,0,0, \ldots
$$

Hence, $\lim _{n \rightarrow \infty} f_{n}(x)=0$ for all $x \in[0,1]$. Thus, $\left\{f_{n}\right\}$ converges pointwise to $f(x)=0$ on $[0,1]$.

Definition 8 (Uniform Convergence)

For $n \in \mathbb{N}$, let $f_{n}: S \rightarrow \mathbb{R}$, and let $f: S \rightarrow \mathbb{R}$. Then, we say f_{n} converges to f uniformly or converges uniformly to f if $\forall \epsilon>0 \exists M \in \mathbb{N}$ such that for all $n \geq M \forall x \in S$,

$$
\left|f_{n}(x)-f(x)\right|<\epsilon
$$

Theorem 9

If $f_{n}: S \rightarrow \mathbb{R}, f: S \rightarrow \mathbb{R}$, and $f_{n} \rightarrow f$ uniformly, then $f_{n} \rightarrow f$ pointwise.

Proof: Let $c \in S$ and let $\epsilon>0$. Then, $f_{n} \rightarrow f$ uniformly implies that there exists $M_{0} \in \mathbb{N}$ such that for all $n \geq M, \forall x \in S,\left|f_{n}(x)-f(x)\right|<\epsilon$. Choose $M=M_{0}$. Then, $\forall n \geq M$,

$$
\left|f_{n}(c)-f(c)\right|<\epsilon
$$

Thus, $\lim _{n \rightarrow \infty} f_{n}(c)=f(c)$ for all $c \in S$, and therefore $f_{n} \rightarrow f$ pointwise.

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

