18.100A: Complete Lecture Notes

Lecture 23:

Pointwise and Uniform Convergence of Sequences of Functions

Sequences of Function

Power Series

Remark 1. Power series motivate the general discussion of sequences of functions.

Definition 2 (Power series)

A power series about x_0 is a series of the form

$$\sum_{m=0}^{\infty} a_m (x - x_0)^m.$$

Theorem 3

Suppose

$$R = \lim_{m \to \infty} |a_m|^{1/r}$$

exists, and let

$$p = \begin{cases} \frac{1}{R} & R > 0\\ \infty & R = 0 \end{cases}$$

Then, $\sum a_m (x - x_0)^m$ converges absolutely if $|x - x_0| < p$ and diverges if $|x - x_0| > p$.

Definition 4 (Radius of Convergence)

In the above theorem, we define p to be the radius of convergence.

$\mathbf{Proof}:$ We have

$$\lim_{n \to \infty} |a_m (x - x_0)^m|^{1/m} = R|x - x_0|,$$

and the theorem follows by the Root test.

Suppose $\sum a_m (x - x_0)^m$ is a power series with radius of convergence p. Furthermore, define $f: (x_0 - p, x_0 + p) \to \mathbb{R}$ such that

$$f(x) := \sum_{m=0}^{\infty} a_m (x - x_0)^m$$

Then, f is a limit of a sequence of functions

$$f(x) = \lim_{n \to \infty} f_n(x),$$

for $x \in (x_0 - p, x_0 + p)$ and where

$$f_n(x) = \sum_{m=0}^n a_m (x - x_0)^m.$$

Example 5

For example, we have

$$f(x) = \frac{1}{1-x} = \sum_{m=0}^{\infty} x^m.$$

Question 6. This concept begs a number of questions:

- 1. Is f continuous?
- 2. Is f differentiable, and does $f' = \lim_{n \to \infty} f'_n$?
- 3. If 1. is true, does

$$\int_{a}^{b} f = \lim_{n \to \infty} \int_{a}^{b} f_{n}?$$

These questions will be the key motivator for the last section of this course.

Pointwise and Uniform Convergence

We now consider a setting far more general than power series.

Definition 7 (Pointwise Convergence) For $n \in \mathbb{N}$, let $f_n : S \to \mathbb{R}$. Let $f : S \to \mathbb{R}$. We say that $\{f_n\}$ converges pointwise to f if for all $x \in S$,

$$\lim_{n \to \infty} f_n(x) = f(x)$$

Let's consider some examples.

1. Let $f_n(x) = x^n$ on [0,1]. Then,

$$\lim_{n \to \infty} f_n(x) = \begin{cases} 0 & x \in [0,1) \\ 1 & x = 1 \end{cases}$$

Thus, $\{f_n\}$ converges to the above pointwise function. Hence, notice that a sequence of continuous functions may not converge pointwise to a continuous function!

2. Let $f_n(x) = \sum_{m=0}^n x^m$ for $x \in (-1, 1)$. Then,

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \sum_{m=0}^n x^m = \frac{1}{1-x}$$

Hence, pointwise, this sequence converges to its power series (see the above example).

3. Let $f_n(x): [0,1] \to \mathbb{R}$ be defined by

$$f_n(x) = \begin{cases} 4n^2x & x \in [0, \frac{1}{2n}] \\ 4n - 4n^2x & x \in [\frac{1}{2n}, \frac{1}{n}] \\ 0 & x \in [\frac{1}{n}, 1] \end{cases}$$

We can picture this sequence (on the next page)

Then, $\lim_{n\to\infty} f_n(0) = \lim_{n\to\infty} 0 = 0$. Let $x \in (0,1]$. Let $N \in \mathbb{N}$ such that $\frac{1}{N} < x$. Then, for all $n \ge N$,

 $f_n(x) = 0.$

Therefore,

$$\{f_n(x)\} = f_1(x), \dots, f_{N-1}(x), 0, 0, 0, \dots$$

Hence, $\lim_{n\to\infty} f_n(x) = 0$ for all $x \in [0,1]$. Thus, $\{f_n\}$ converges pointwise to f(x) = 0 on [0,1].

Definition 8 (Uniform Convergence)

For $n \in \mathbb{N}$, let $f_n : S \to \mathbb{R}$, and let $f : S \to \mathbb{R}$. Then, we say f_n converges to f uniformly or **converges** uniformly to f if $\forall \epsilon > 0 \exists M \in \mathbb{N}$ such that for all $n \ge M \forall x \in S$,

 $|f_n(x) - f(x)| < \epsilon$

Theorem 9 If $f_n: S \to \mathbb{R}$, $f: S \to \mathbb{R}$, and $f_n \to f$ uniformly, then $f_n \to f$ pointwise.

Proof: Let $c \in S$ and let $\epsilon > 0$. Then, $f_n \to f$ uniformly implies that there exists $M_0 \in \mathbb{N}$ such that for all $n \geq M, \forall x \in S, |f_n(x) - f(x)| < \epsilon$. Choose $M = M_0$. Then, $\forall n \geq M$,

$$|f_n(c) - f(c)| < \epsilon.$$

Thus, $\lim_{n\to\infty} f_n(c) = f(c)$ for all $c \in S$, and therefore $f_n \to f$ pointwise.

18.100A / 18.1001 Real Analysis Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.