18.100A: Complete Lecture Notes

Lecture 14:
Limits of Functions in Terms of Sequences and Continuity

Theorem 1

For all $c \in \mathbb{R}, \lim _{x \rightarrow c} x^{2}=c^{2}$.

Proof: Let $\left\{x_{n}\right\}$ be a sequence in $\mathbb{R} \backslash\{c\}$ such that $x_{n} \rightarrow c$. Then, $x_{n}^{2} \rightarrow c^{2}$ by a theorem shown in Lecture 8 . Thus,

$$
\lim _{x \rightarrow c} x^{2}=c^{2}
$$

Theorem 2

We show that

1. $\lim _{x \rightarrow 0} \sin (1 / x)$ does not exist, and
2. $\lim _{x \rightarrow 0} x \sin (1 / x)=0$.

Proof:

1. Let $x_{n}=\frac{2}{(2 n-1) \pi}$. Then, $x_{n} \neq 0$, and $x_{n} \rightarrow 0$. But,

$$
\sin \left(1 / x_{n}\right)=\sin \left(\frac{(2 n-1) \pi}{2}\right)=(-1)^{n+1}
$$

for all n. However, this sequence does not converge (i.e. the limit does not exist).
2. Suppose $x_{n} \neq 0$ and $x_{n} \rightarrow 0$. Then,

$$
0 \leq\left|x_{n} \sin \left(1 / x_{n}\right)\right|=\left|x_{n}\right|\left|\sin \left(1 / x_{n}\right)\right| \leq\left|x_{n}\right| .
$$

By the Squeeze Theorem, $\lim _{n \rightarrow \infty}\left|x_{n} \sin \left(1 / x_{n}\right)\right|=0$.
We can use the 'sequential limit' characterization to prove analogs of previous theorems for limits of sequences.

Theorem 3

Let $S \subset \mathbb{R}, c$ a cluster point of S, and $f, g: S \rightarrow \mathbb{R}$. Suppose $\forall x \in S, f(x) \leq g(x)$ and $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ exist. Then,

$$
\lim _{x \rightarrow c} f(x) \leq \lim _{x \rightarrow c} g(x) .
$$

Proof: Let $L_{1}=\lim _{x \rightarrow c} f(x)$ and $L_{2}=\lim _{x \rightarrow c} g(x)$. Let $\left\{x_{n}\right\}$ be a sequence in $S \backslash\{c\}$ such that $x_{n} \rightarrow c$. Then, $\forall n \in \mathbb{N}, f\left(x_{n}\right) \leq g\left(x_{n}\right)$. Therefore,

$$
L_{1}=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \leq \lim _{n \rightarrow \infty} g\left(x_{n}\right)=L_{2} .
$$

Similarly, we have analogs of the Squeeze Theorem, limits of algebraic operations, and limits of absolute values. You may read the end of Section 3.1.3 [L] for this.

Definition 4

Let $S \subset \mathbb{R}$ and suppose c is a cluster point of $S \cap(-\infty, c)$. Then, we say $f(x)$ converges to L as $x \rightarrow c^{-}$if $\forall \epsilon>0 \exists \delta>0$ such that if $x \in S$ and $c-\delta<x<c$ then $|f(x)-L|<\epsilon$.

Notation 5

This is denoted $L=\lim _{x \rightarrow c^{-}} f(x)$.

Definition 6

Similarly, let $S \subset \mathbb{R}$ and suppose c is a cluster point of $S \cap(c, \infty)$. Then, we say $f(x)$ converges to L as $x \rightarrow c^{+}$ if $\forall \epsilon>0 \exists \delta>0$ such that if $x \in S$ and $c<x<c+\delta$ then $|f(x)-L|<\epsilon$.

Notation 7

This is denoted $L=\lim _{x \rightarrow c^{+}} f(x)$.

Example 8

Let $f(x)=\left\{\begin{array}{ll}1 & x>0 \\ 0 & x<0\end{array}\right.$.Then,

$$
\lim _{x \rightarrow 0^{-}} f(x)=0 \text { and } \lim _{x \rightarrow 0^{+}} f(x)=1
$$

even though $f(0)$ is undefined.

Theorem 9

Let $S \subset \mathbb{R}$ and let c be a cluster point of $S \cap(-\infty, c)$ and $S \cap(c, \infty)$. Then, c is a cluster point of S. Moreover,

$$
\lim _{x \rightarrow c} f(x)=L \Longleftrightarrow \lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)=L
$$

Continuous Functions

As we have seen, limits do not care about $f(x)$ when $x=c$. Continuity is a condition that connects $\lim _{x \rightarrow c} f(x)$ with $f(c)$.

Definition 10 (Continuous Functions)

Let $S \subset \mathbb{R}$ and let $c \in S$. We say f is continuous at c if $\forall \epsilon>0 \exists \delta>0$ such that if $x \in S$ and $|x-c|<\delta$ then $|f(x)-f(c)|<\epsilon$ We say f is continuous on U for $U \subset S$ if f is continuous at every point in U.

Example 11

$f(x)=a x+b$ is continuous on \mathbb{R}.

Proof: Let $\epsilon>0$ and choose $\delta=\frac{\epsilon}{1+|a|}$. If $|x-c|<\delta$, then

$$
\begin{aligned}
|f(x)-f(c)| & =|a x+b-(a c+b)| \\
& =|a||x-c| \\
& <|a| \delta \\
& =\frac{|a|}{1+|a|} \epsilon<\epsilon .
\end{aligned}
$$

Example 12
Show that $f(x)=\left\{\begin{array}{ll}1 & x \neq 0 \\ 2 & x=0\end{array}\right.$ is not continuous at $c=0$.

First we write the negation of the definition of continuity.

Negation 13 (Not Continuous)
f is not continuous at c if $\exists \epsilon_{0}$ such that for all $\delta>0, \exists x \in S$ such that $|x-c|<\delta$ and $|f(x)-f(c)| \geq \epsilon_{0}$.

Proof: Choose $\epsilon_{0}=1$ and let $\delta>0$. Then, $x=\frac{\delta}{2}$ satisfies $|x-0|<\delta$ and

$$
|f(x)-f(0)|=|2-1| \geq 1=\epsilon_{0}
$$

MIT OpenCourseWare
https://ocw.mit.edu

18.100A / 18.1001 Real Analysis

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

