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PROFESSOR STRANG: Ready for the least squares lecture, lecture 11? Homework is 
just being posted on the web. It'll be due, it's really to help you practice, get some 
experience on these sections for the first exam. That's Tuesday evening. So eight 
days away. So the homework will be due the day after. And actually, we'll try to 
move the review session to Monday next week so you can ask me any questions 
about the homework or any review material. So that's all a week away and this week 
we get two great examples. Least squares is one that comes today. 

But could I first, because I keep learning more, and I've got your MATLAB 
homeworks to return, I keep sort of learning a little more from your MATLAB results 
and I think because we spoke about it, it would be worth speaking just a little more. 
So I'm going to take ten minutes about this convection diffusion equation in which I 
put in a coefficient d, a diffusivity just to help get the units right. So this is your 
example. And it had d=1 of course. Well first I realized that later in the book I 
completely forgot that I discuss this problem. About page 509 I think. I discussed it 
a little bit. And just because it's worth, since we invested a little time, the little bit 
more will pay off. So first of all, the point is here we have convection competing with 
diffusion. 

And always there's some non-dimensional number. Here it's called the Peclet 
number. Actually, there's an accent on one of those e's, Peclet number. Which 
measures the ratio, the importance of convection relative to diffusion. So it's V times 
a length scale in the problem divided by d. So then that has the same units as that if 
the result is dimensionless. Maybe you know the Reynolds number. This is very like 
the Reynolds number, which also measures in Navier-Stokes equation the 
importance of convection, advection and diffusion. There in that equation the 
velocity, V, that's a non-linear equation, Navier-Stokes, it's tremendously important 
and many codes to solve it, lots of discussion, theory still not complete. In that 
problem, the V is u. It's non-linear and the term there that we took as a constant, as 
a given constant V, it's the same as u. So in the Reynolds number, this would be u, a 
typical velocity u, times a typical length scale, which would be like one in our zero to 
one problem, divided by d or mu or nu, whatever number we use. So it's like the 
Reynolds number. 

And then it's turned out for this problem that people also use a number that gets 
called the cell Peclet number where the length is taken to be half the cell size, delta 
x over two. Let me call that number P. So that's P. And what's my point? This 
equation's important enough to sort of see a little more about it than just the 
numbers that come out. So the MATLAB homework which you did really well set up 
finite differences for this. Right? And found the eigenvalues and solutions. It's the 
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eigenvalues I want to say a little more about. Because you set up a matrix K over 
delta x squared and V times the center difference over delta x. And I guess I call that 
whole combination L asked you about the eigenvalues of L. And you printed them out 
correctly. 

But there's more there than I think we have understood. And I want to make some 
more comments about that. Because it's quite important. And the comments are 
clearest if I just reduce to a n equal 2. So that matrix, well the off-diagonal part of 
that matrix had some number v and some number c. Actually we could figure out 
what was the b in this. This produced a minus 1, 2, minus 1, right? So part of the b 
was the minus 1 over delta x squared. And then from this was a plus V and a 1 over, 
well it's a center difference so I should divide by 2 delta x. Is that right? Is that what 
a typical off-diagonal thing that in the matrix that you displayed? That's what's 
coming from the off-diagonal of K. And this is what's coming from the center 
difference c. And then what would this c thing be? Well the c is below the diagonal so 
it's also at minus 1 over delta x squared. But now this is a difference, so it's going to 
be a minus, right? I think those would have been your entries for b And c. 

So can we just think first, what are the eigenvalues of that matrix? It's a two by two 
simple problem. The trace is zero plus zero. So that the eigenvalues will be a plus 
minus pair because they have to add to zero. And I think that's the plus minus pair 
you get. Let's just check. What's our other check? They will add to zero, the plus the 
square root and minus the square root. And the product of the two eigenvalues, 
lambda one times lambda two, will be, we have one of them is plus, one with a 
minus, so it'd minus b c. And that's correctly the determinant. So it's good. These 
are the correct eigenvalues. 

Now let me ask you about the signs of b and c. If b and c have the same signs, like 
maybe even equal, one, one, what are the eigenvalues? So in that symmetric case if 
b and c are equal the eigenvalues are? Right here. If b and c are equal, say equal to 
one, the eigenvalues are plus and minus one. But what if the signs are opposite? 
Everything changes. What if b is one and c is minus one? That matrix would then be 
a 90 degree rotation. It would be anti-symmetric if b was one and c was minus one. 
Our formula is still correct, but what does it give us? If b is one and c is minus one 
what have I got here? I've got i. So the eigenvalues change from plus and minus one 
in the symmetric case to plus and minus i in the anti-symmetric case. And I think 
that's what you guys saw at a certain level of V. I hope you did because that was the 
point about eigenvalues. 

Now you may say, what about the diagonal? Well I claim diagonal is very simple. 
What's the diagonal? Now I'm going to allow myself a diagonal and I'm just going to 
change. What happens if I have a and a? Same entry on the diagonal. What are the 
eigenvalues now? This is just like, a great chance to do some basic eigenvalue stuff. 
What are the eigenvalues of that matrix? Well I've added a times the identity. I've 
just shifted that matrix by a. So the eigenvalues all shift by a. So the eigenvalues are 
now a plus and minus. So no big deal. So you say that the a is actually not 
important, not the key to this question of are they real or do they go complex. So 
the eigenvalues of this are real when b and c have the same sign. If b and c have the 
same sign, I have a square root, no problem. When b and c have opposite sign, what 
do I get? When b and c have opposite sign, I'm taking the square root of a negative 
number and I've gone complex. Do you see that the change from real eigenvalues, 
which gives a nice curve, to complex eigenvalues, which gives a very bumpy curve 



for the solution, just happens when like, for example, b-- is it b that's going to go to 
zero maybe? And then beyond that? 

Well this sign is for sure negative, right? So c is staying negative. And originally for a 
little delta x, b is also negative. What's happening here? I think that the transition 
that you I hope observed comes when b hits zero. When the combination of V and 
delta x is such that at b=0 we switch from real eigenvalues to complex eigenvalues. 
And when is b=0? That's when this negative guy off the diagonal just exactly cancels 
this one. So b is zero when what? So if this equals this, one over delta x squared is 
equal to V over two delta x, let me multiply both sides by delta x squared so that I 
have a nice one there, multiplying by delta x squared will put a delta x up here. 

And what have we discovered? This is why I wanted you to see it. That the transition 
comes when the Peclet number is one. So that Peclet number, that cell Peclet 
number is exactly the point but we observed of transition from real eigenvalues to 
complex eigenvalues. And that's the transition. So it's that combination, this is the 
Peclet number, cell Peclet number, it's that combination, P_cell maybe. We've done 
the computations and now we gradually get back to the meaning. And I just wanted 
to take this step back to the meaning to see when do those numbers start going 
complex. You may have noticed or you may not have noticed that it'll happen when 
one of those, when that upper diagonal changes sign. 

Now you could say, ok that's the eigenvalues. What's the consequences for the 
shape of the solution? Well, I haven't figured all that out. I'd be happy to have some 
more thoughts about that. But what you noticed, I think, in the computations is if V 
got too big so that that P was bigger than one, if V got too big, so convection was 
dominating and our delta x was not small enough to deal with it, you should have 
seen the points on the discrete values were oscillating instead of a proper smooth. I 
mean, the proper, with a large V, the correct solution, I think, is practically nothing 
for here and then it goes, this is a really large V, take V to a thousand or something. 
It climbs up like mad. Here's the halfway point where the load is. And then it goes 
along here and then it climbs down like mad to satisfy the boundary condition. I 
didn't know that that's what would happen for large V. What I'm saying is, and 
undoubtedly it could be understood physically, so I guess what I'm saying is there's 
just more good stuff in any computation than purely the numbers. And this is part of 
the good stuff in that example. 

I hope you liked that. Because I mean, here you did the work but then, to 
understand it is frankly still under way. More thinking to do. That's back to least 
squares. Here's today's lecture. So remember where we started last time. Au=b. Last 
time I wrote f. I regret it terribly. I can't fix it. But it's b. I want b there to be the 
right-hand side. And I jumped to the equation that determines the best u. There's no 
exact u because we've got too many equations. You remember the set-up, we have 
too many equations. There's noise in the measurements and we can't get the error 
down to zero. There's some error. And the best u was given by that equation and we 
want to say why. And understand it from two or three ways. Calculus, geometry, 
everything. 

Can I first, because I love my little framework here, fit it in because it's quite 
important, this example and then others fit in. So u is our unknown as always. Then 
the matrix A in the problem produces an Au. Now two things to notice about e, 
which, that's the same letter I used for elongation, here it's standing for error. Two 
things to notice. One is that the source term, which is b, comes in at this point of the 



framework. When we had external forces on springs and on masses it came in at this 
point. We had an f there. So that's why I'd like to keep those two separate. The b's 
are like voltage sources, they come in here. The f's are will be like current sources, 
they'll come in there. Actually it's beautiful. 

One more thing to notice. A is coming with a minus sign. In mechanics in masses 
and springs we had e=Au. Here it's natural to work with this, the error or the 
residual b-Au. And that minus sign is natural in physics and in electrical engineering 
and hydraulics. Where's that minus sign coming from in flow? Well, flow goes from 
the higher point to the lower. Higher voltage to the lower voltage. And that usually 
produces that minus sign. No big deal, of course. So that step is fine with the 
framework. 

What do we expect in that middle step? So what's our name for the matrix that goes 
there? Everybody's gotta know this framework. C, right? Only I've been taking 
unweighted least squares. So for unweighted least squares, C will be the identity. 
And C doesn't show in our equations. So C is the identity when there are no weights, 
when all the equations are equally reliable. And that's pretty common, of course. But 
not always. And we'll think, ok there is a weight e. So w, which is Ce, is weighted 
errors, you could say. So the letter w comes up appropriately again. Weighted 
errors. And then what's the good weighting? May I stay with C equal the identity for 
the moment? Unweighted least squares, because that's by far the most common. 
And then w and e are the same. C is the identity. And finally, there's the last step in 
our framework where we always expect to see A transpose. And we do. And we have 
to say why. 

So that's where I left it last time. That this was the picture. This is the equation. If I 
had a matrix C, it would go there and there. Right? Because I'd have b-Au and then 
I'd apply C before A transpose. So C would slip in there before A transpose on both 
sides. So that would, with the C's there, that would be the weighted least squares 
equation. You see that it would be A transpose C A instead of A transpose A, but still 
the main facts are there. 

So where does the equation come from? So one source, one way to get the equation 
is from calculus. From minimizing, from minimizing. Set a derivative to zero, 
calculus. And what's the quantity we're minimizing? We're minimizing that squared 
error because this is least squares. We're minimizing this, e transpose e, the length 
of e squared. The sum of the squares of the errors. Which is (b-Au) transpose b-Au. 
Again I could say where to slip in the C matrix. If there was one, it would go in 
there. C would go in there, C would go in there. There'd be a C in the equation. But 
let's keep C to be the identity. So I minimized. It's a quadratic. It's got u's times u's, 
so second degree. And what's the coefficient in that second degree part? Well, the 
second degree part is coming from Au transpose Au. Right? This times this is going 
to be linear. This times this is going to be linear. That times that is just going to be a 
constant, its derivative is zero. But this times this is altogether, that times that is the 
u transpose A transpose Au. Right? So that's the quadratic part. And my only point is 
it's like our old stiffness matrix. We're seeing the matrix in here is A transpose A. In 
other words, when I do calculus and maybe I'd prefer to see something than just 
compute away, take derivatives mechanically. So I'm going to leave that which is 
done in the text, finding the derivative, setting to zero. And what does it give? It 
gives us our equation. So that equation will come when I set the derivatives of this 
thing to zero. So that's one totally ok approach. 



But I like to see a picture with it. I hope that's alright. To take the second approach 
is to see why A transpose w equal zero. Why is that? What's going on in that key 
step? This is always the key step. This is like the set-up step. This is the weighting 
step with constants coming in. And here's the key step. Let's see that. So my 
picture. Let me draw that picture again. And my example was in three dimensions, 
so m=3. I've got three equations. The matrix A, oh I'm afraid I don't remember what 
it was, but I think it was something like [1, 1, 1; 0, 1, 3], was that maybe it? Just to 
connect to last time. And what I'm now calling V was the vector  was it? Or was it 
not? It was maybe? That's right? And what was the point? If I draw the vector b it 
goes there somewhere. If I draw the first column of A, it goes here somewhere. If I 
draw the second column of A, it goes there somewhere. And if I draw all 
combinations of these columns, all combinations of that vector and that vector, what 
do I get? I get a plane. I get a plane. There it is. That's the plane. That's the plane. 
This is from column one. Here's column two. This plane is the column plane or 
column space. It's the column space of A because it comes from the columns of A. 

Now what's the point about this plane? The point is that if b is on the plane then I'm 
golden. If b is on the plane then b is a combination of the columns, that's what the 
plane is, and I have a solution to Au=b. So b on a plane, b on the plane means Au=b 
is solvable. And it could happen, of course. Like perfect measurements. But we can't 
expect it. When we have three measurements or 100 measurements or 10,000 
measurements we can't expect perfection. So usually b will be off the plane. Now 
what? What happens when b is off the plane? Let me just complete that picture. And 
you know what's coming. If we're going to get-- Au or Au hat is going to be on the 
plane so I'm looking for the best u hat. 

Can I just erase this to make space for what you know I'm going to draw? Here are 
these little columns, let me put them there. What am I going to draw? The 
projection. The projection. I'm going to draw, what's the projection? The projection is 
the nearest point that is in the plane to the b that's not in the plane. So here's the 
projection p. I drop down this thing. There's the projection p, little p. That's the 
projection of b onto the plane. I think your mind says yeah, that's the right choice. 
And do you want to tell me what this? That is the part that we can't deal with. The 
part we can't improve. We've made it as small as we could and it's e. That's the error 
e and this p is the best guy that is in the plane. Do you see that this is the picture. 
You get an actual picture of what's going on. You're splitting b, the measurements 
into the part you can deal with, the projection, the Au hat that is in the column 
space. It is a combination of the columns. Those points do lie on a line if I'm doing 
straight line fitting. And the part that you can't deal with, the e, the difference, b-Au, 
which is not in the plane. 

And now I'm still looking for the equations. Right? I've just named some stuff. But I 
haven't got an equation for that projection. So what's the key fact? What's the key 
fact in this picture that's going to lead me to an equation for p and e and u hat and 
everything? The key fact is that that dotted line is perpendicular, perpendicular to 
the plane. If I'm looking for the closest point, everybody knows project, that's what 
projection involves. Go perpendicular. This is a right angle. That e is perpendicular to 
the whole plane. Not only perpendicular to p, it's perpendicular to everybody in that 
plane. Right? I'm dropping the perpendicular to the plane. Do you accept that? 
Because if you do, we're through. We just write down the equations for perpendicular 
and we've got what we want from the picture instead of from a calculation. 



So what's the idea? So e is perpendicular to the first column. So b in the plane, we 
would be golden. Let's suppose we're not in the plane. So now we have this 90 
degree angle, this perpendicular projection. And it tells me that the first column-- oh 
I better name the columns. Can I just call this column a_1? That first column is a_1 
and the second column is a_2. So those two columns, whatever they are, are the 
guys whose combinations give us the plane. And it's the plane that we're projecting 
onto. It's the plane of all combinations that comes up here. So what's this 90 degree 
angle? It says that a_1 is perpendicular to p, right? Sorry! Say that right for me. The 
first equation says that a_1 and what are perpendicular? e, thank you, e. So the first 
equation says that a_1 transpose e is zero. And the second equation says that a_2 
transpose e is zero. Those are my two equations. 

I have to convert those now into matrix language because I've done them two 
separate-- vector, I mean vector language, and I want to get into matrix language. 
But it's easy to do. Here I have, look, if I have two equations, let's get a matrix here. 
What's it saying? a_1 transpose and a_2 transpose, what are those? They're the 
rows of A transpose. So the matrix way to say that is A transpose e equal zero. In 
other words, this is saying both at once, right? The first row of A transpose times e 
gives zero, the second row of A transpose times e is zero. So it's A transpose e equal 
zero which is what we wanted in this case where w and e are the same. Because C is 
the identity. And let's just go one step further and see. That's A transpose (b-Au hat) 
is zero. Remember this zero stands for , right? I wanted to put the two equations 
together. So I've got two components on the right-hand side. And then I just 
plugged in what b is. And now everybody sees it, right? Everybody sees that we've 
got the picture, this 90 degree angle was the key to these equations. Because if I put 
A transpose Au hat onto the other side, I've got exactly the normal equations that I 
wanted. 

We're taking the time to see the picture and the form of the equations. Then I can 
plug in the numbers, but the thinking is where the equations come from. so we're 
there. Now what to do next? Now we've understood where the equations come from. 
I didn't go through the steps of taking the derivatives, but that would work. Or this 
picture. I love this picture. Let me stay with that a little bit longer. What is u hat? 
Can I just go over here to say, ok what have we got here? We started with Au=b and 
then we got the projection was Au hat. But now what is u hat? I'm just going to 
assemble things here. u hat we figured out by the 90 degree angle comes from this 
equation, which is that equation, which is A transpose Au hat equal A transpose b, 
the central equation. That's the central equation. 

Now plug in u hat here so I get a formula for the projection. While we're doing all 
this stuff we might just as well put those two pieces together and have a formula for 
the projection. So it's A times u hat-- I hope you like this formula. It's kind of goofy-
looking but you'll remember it. What is u hat? The whole point is that this matrix is 
good. It's square, it's symmetric, it's invertible, we'll have another word about that. 
And now I'll invert it times A transpose b. That's the goofy formula that I wanted you 
to see. The projection of vector b onto these columns of A comes from applying this 
matrix, sometimes I call it the matrix of four A's. Now it's worth looking at that 
matrix. Often I'll call that matrix capital P. It's the projection matrix. You give me 
any vector b, I multiply it by this matrix and I get the projection. It's just worth 
seeing what this matrix P, these four A's, what are projection matrices like. 

Now first of all, when I have an inverse of a product any reasonable person would 
say ok, split that into A inverse times A transpose inverse and simplify the whole 



thing. And what will happen? It's not going to be legal, but let's just pretend. If I 
split this into A inverse times A transpose inverse and simplify, what do I get for P? 
Do you see it? I'll get A and if I try to split this into that, what do I have here? I've 
got the identity. That's the identity. That's the identity. The result is the identity. 
That doesn't look good, right? P is not the same as P. This matrix cannot be split into 
these two pieces. A is rectangular, that's its problem. If A was square, oh yeah, think 
about the case when A is square. Suppose m equals n. That case'll be included here. 
If m equals n and my matrix is square and invertible and golden then all this works. 
The projection is the identity matrix. And what's with my picture? What's my picture 
look like in the case where A is a square matrix? Give it another column. Fit this 
thing by a quadratic. So if I was fitting instead of by a straight line, by a quadratic, it 
turns out I'd have zero squared, one squared and three squared in that column. I'd 
have a three by three matrix. It comes out to be invertible. 

Now what's going on? Now what's my problem Au=b? Now suddenly m is still three, 
but now n is three. b is? And what happened to the plane? b is in there. And now 
what's there? It's now the combinations of what? Why did that plane come in? That 
was the combinations of two columns. But now I've got three. The combinations of 
three columns, those three columns of an invertible matrix is what? Are you with 
me? If I have a three by three invertible matrix, these three columns independent, 
pointing off different directions, not in a plane, then when I take the combinations I 
get? I get R^3. I get the whole space. I get everybody. Every vector including this b 
and any other b you want to suggest will be a combination of these three guys. So 
what's my picture here? My picture is that plane grew to be the whole space. So 
what's the projection of b onto the whole space? b itself. And what's the error? Zero. 
Good. So that's the nice case. That's the standard case that we've thought about in 
the past when m equalled n. In that case P is the identity and that'd be all true. But 
normally it's not. 

So I want to come back to this P just to mention an important fact about P. And it 
comes again from the picture. So this is a projection. This is what I'm calling the 
projection matrix. It's the matrix that does the projection. And there it is. Four A's in 
a row that multiplies b. Now here's my little question. So linear algebra's full of these 
different kinds of matrices. Rotations, reflections, symmetric matrices, Markov 
matrices, so it's just every problem has matrices. Now here we have a projection 
matrix. Now what I want to know is what happens if I project again? If I take the 
vector b, any vector b, I project it and then I project again. So project twice and just 
tell me, you know what will happen. I'm back to this picture. I project b to P and now 
I project again. Where do I go? Same place, right? Once I'm in the plane the 
projection stays right where it is. So what does that tell me? That tells me that P 
squared on b is the same as P on b. If I project twice, no change. It's the same as 
projecting once. So the projection matrix has the property that P squared is P. 

And actually, we should be able to see it if I write out this whole miserable thing 
twice. So now I'm going to be up to eight A's. Sorry about this, but I promise not to 
do P cubed. A times A transpose A inverse times A transpose, that's one P. I'll write 
it again. There's the second P. So that's P squared. Do you see anything good there? 
Do you see in here A transpose A, that combination and that combination there. This 
cancels that to give the identity. And what am I left with? I'm left with A, the inverse 
times A transpose, which was exactly P. The algebra is just coming along with the 
understanding that we know. So that's the projection matrix. So this is the theory of 
projections in a nutshell, in a nutshell. This is projections onto the column space of 
A. 



Now I have to remind you about one little math point. Not so little, I guess. How 
could I say little for math? Is A transpose A invertible? We're plowing along as if it is, 
that's going to be our assumption. But what's the condition for A transpose A to be 
invertible, which allows all this to work? When is A transpose A invertible? What I'm 
doing here now is I'm separating the positive definite one. When A transpose A is 
positive definite, the good normal case when all our equations work, from the semi-
definite one where we overlook the fact that A transpose A, where somehow the 
experiment wasn't well set up, we got an A transpose A that is singular. And just to 
see when could that happen. Let me just remind you. This is important. Why don't I 
give it some space. 

It's really straightforward. Let me just go through those steps again. If it's not 
invertible, if some A transpose A u is zero. This is always the risk that we have to 
check out and be sure we don't have and understand. So if A transpose Au is zero, 
then that would lead us, I could multiply both sides by u transpose. u transpose 
zero, right? Safe. Multiply whatever that u might be, multiply both sides by u 
transpose. But what is u transpose zero? Zero, nothing there. Now how do I 
understand this guy? Well you remember the key. Everybody remembers the key? 
You look at that thing and you say hey, if I put in parentheses in the right place 
that's the length of Au squared. So that's the small trick that this multiplying by u 
transpose and then seeing what you've got that we've done and you should know it. 
And now if the length squared is zero, what does that tell me about Au? If I have a 
vector here who's length is zero, that vector must be? Zero. Zero vector's the only 
one for which the sum of the squares will give zero. And if Au is zero I could multiply 
both sides by A transpose and complete the loop. Actually I thought of that when I 
was swimming this morning, that line. 

Just to see once again when, it's sort of interesting then. A transpose Au equal zero 
which is the bad thing we hope we don't deal with. And when does it happen? It 
happens when A u is zero. So our assumption always has to be this; that there aren't 
any u's, except the zero vector of course, that's always going to happen, but we 
always have to assume that Au is never zero. So we have to avoid this. So to avoid 
that assume A has, this is the key word, independent columns. Since this is a 
combination of the columns, independent columns means what? It means that the 
only combination of the columns to give zero is the zero combination. So did I have 
independent columns over here? I sure did. That column and that column were off in 
different directions, they were independent. And that's why I knew we were fine. A 
transpose A was zero. I would have to really struggle to find a, well I'd have to think 
a bit to find an example where we run into trouble. These squares, well I certainly 
could in many applications, but the straightforward applications of fitting a straight 
line, A is going to be a column vector of ones and a column vector of times and those 
are different directions and no problem. So that's A transpose A. 

What else to do with this topic? Because there's a whole world of estimation. I mean, 
statistics is looking over our shoulder I guess. Really, we should realize that a 
statistician say yeah, I know that but, and then going on. And what is that guy, what 
more does he have to say? So you've got the central ideas. I guess the statistician 
comes in in this, that's the statistical constant now. And what do statisticians 
compute? They say you've got errors, right? And of course, in any particular case we 
don't know what that error is, otherwise we could take it out and we'd get exact 
solutions. We don't know what the error is. What is reasonable to know about errors? 
We're doing a little statistics here. Somehow that error, that particular error of the 



experiment that we happen to run, and if we ran it again we'd get a different error, 
those errors come out of some sort of error population. Like dark matter or 
something. Just like, a bunch of errors are out there, noise. And what could we 
reasonably assume that we know about the noise? We could assume that its average 
is zero, mean zero. So statisticians always, that just resets the meter. Right? If you 
had a meter or a clock that was always three minutes ahead (like this one) you 
would reset it. And we'll do that one day. So you'd reset to get the average zero. 

But that doesn't mean every error is zero, right? That just means the average error 
is zero. So what's the other number? What's the other number that statisticians live 
on? It's the deviation or its square, which is called the variance. Right. Variance. So 
that's the thing that you could assume that the errors have mean zero and have 
some variance. You could suppose that you knew something about the variance. You 
don't know the individual errors, but you know whether the errors are like, are very 
small or close to zero or large. So this is a small variance. So one over sigma is sort 
of that distance. One over sigma. Here, this is a large variance where the magnitude 
of the error could be much larger from this. So those are the two numbers, mean 
zero, that leaves us just one number, and the variance, the standard deviation sigma 
or the variance sigma squared. 

One moment on these squares. Let me just say what the weighting matrix would be. 
And then I can tell you in a moment why. What would the weighting matrix be if our 
three equations, you know, that came from one measurement and this came from a 
second measurement and this came from a third measurement. If they came from 
different meter readers with different variances, suppose, then the right C matrix will 
be a diagonal matrix, beautiful. And what sits up there, what sits there, what sits 
there? We don't have spring constants anymore. We have statistics constants. And 
what's the number that goes there? That one is the third guy. So it's associated with 
the third measurement. It's one over sigma three squared. Those are the numbers 
that go on the diagonal, the inverses of the variances. 

And just to see that that makes sense. If that number is unreliable, if it has a large 
variance then I want to give it little weight, right? If this third meter is very 
unreliable I'm not going to throw it out entirely, but I know that it's variance is large 
and therefore I'll weight that equation only a little, with a small weight. Suppose 
sigma two, so this guy is one over sigma two squared, suppose this is an extremely 
reliable meter. That measurement has little expected error. Then I want to weight it 
heavily. So it has a small sigma two and that gives it a large weight. And sigma one 
similarly. So that's the weighting for the case that you can actually hope to use in 
practice. 

I'll just mention that statisticians would also say, wait a minute. Measurement two 
and measurement three might be interconnected. They might not be independent. 
There might be a covariance. And then that gets them into more great linear algebra 
actually. But if I want a diagonal matrix C that's the case when my measurements 
are independent. And basically, I'm whitening the system. I'm making the system 
white, making it all equal variances by rescaling. By weighting the equations. 

Ok thanks. Wednesday is the next big example of the framework with b and f. See 
you then. 


