I’Ho6pital’s Rule, Continued

In keeping with the spirit of “dealing with infinity” we look at an application
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of ’Hopital’s rule to a limit of the form —. In other words, as x approaches a
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we have:
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and so we can conclude that:
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(Recall that a and L may be infinite.)

Rates of Growth

We apply this to “rates of growth”; the study of how rapidly functions increase.
We know that the functions In 2 and 22 both go to infinity as 2 goes to infinity,
and that 22 increases much more rapidly than Inz. We can formalize this idea
as follows:

If f(z) > 0 and g(z) > 0 as x approaches infinity, then

f(z) << g(x)asz — oo means lim ——= =0.

(Read f(z) << g(z) as “f(z) is a lot less than g(x)”.) In our example,
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f(r) = Inx and g(z) = 2. If we use 'Hopital’s rule to evaluate lim, o

lim, o0 h;—ff we get:
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We conclude that Inz << z? asz — 0.
If p > 0 then:
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Rates of Decay

“Rates of decay” are rates at which functions tend to 0 as = goes to infinity.
Again our new notation comes in handy; if p > 0 then:
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