16.687
 Private Pilot Ground School
 Massachusetts Institute of Technology
 IAP 2019

Navigation

Outline

- Pilotage (look out the window)
- NDBs monitored via ADF (needle points to radio station)
- VOR (1950s upgrade to NDB)
- GPS and moving map

Section A

PILOTAGE AND DEAD RECKONING

Pilotage

- Navigation using visual landmarks
- VFR charts emphasize objects easy to identify from the air, e.g., highways, towns, big towers
- Ground procedure:
- Plot planned course (avoid restricted areas, open water)
- Select checkpoints along the route
- Measure distance from checkpoint to checkpoint
- Develop flight plan and navlog
- In-flight procedure
- Fly planned headings and airspeed
- At each checkpoint, use left/right deviation for wind correction

Example

- From: Hanscom Field, Bedford, MA (BED)
- To: Morse State Apt., Bennington, VT (DDH)

Planning Goal: Navlog

Waypoints Fixes	MEA I (MORA)	Route	MC	Fuel (gal)	$\begin{aligned} & \text { Dist } \\ & \text { (NM) } \end{aligned}$	$\begin{aligned} & \text { GS } \\ & \text { (Kts) } \end{aligned}$	ETE	ATE	WIND
	FREQ			LEG	LEG				
KBED HANSCOM N42' 28.197^{\prime} W71 $1^{\circ} 17.340^{\circ}$		ALT	MH	REM	REM	EST	TTE	ATA	OAT
				54	90	ACT			
level off	(4900)		298	1	9	123	00:04		
		4500	292	52	81		00:04		
KFIT FITCHBURG MUN N42 ${ }^{\circ} 33.247^{\prime}$ W71' 45.538^{\prime}	(4900)		298	1	13	123	00:05		227@17
		4500	292	51	69		00:10		
start descent	(6100)		301	5	55	143	00:23		
		4500	297	46	14		00:33		
KDDH MORSE STATE N42 53.472^{\prime} W73* 14.765°	(6100)		301	1	14	143	00:05		230@14
		827	297	45	0		00:39		
		ROUTE TOTALS		9	90		00:39		

Dead Reckoning

- Navigation solely by means of computations based on time, airspeed, distance and direction
- Use in conjunction with pilotage
- Steps:
- Plot course on chart, including landmarks
- Measure true course (TC) at meridian nearest the center of the course
- Correct for forecast wind to find true heading (TH)
- Correct for magnetic variation to find MH
- Estimate ground speed and ETE for each leg (account for time, speed, distance to climb in the POH)

Courses and Headings

- Course
- Direction over the ground
- Heading
- Direction aircraft is pointing
- Wind can make heading different from course
- True (course or heading)
- Referenced to true north pole
- Magnetic (course or heading)
- Referenced to magnetic north pole

Courses and Headings

- True Course
- Direction of line from A to B relative to true north
- True Heading
- Direction airplane is pointed, given wind corrections, relative to true north
- Magnetic Course
- Direction of line from A to B relative to magnetic north
- Magnetic Heading
- Direction airplane is pointed, given wind corrections, relative to magnetic north
- Compass Heading
- Magnetic Heading corrected for airplane-specific compass errors

Magnetic Variation

- Isogonic Line: correction factor to convert from True to Magnetic
- east is least, west is best (subtract east, add west)

Local Magnetic Variation

- True north != magnetic north
- VORs in magnetic
- Isogonic lines
- "east is least; west is best": true + W variation $=$ mag

Magnetic Deviation

- Magnetic and electrical fields inside the cockpit disturb compass
- Compass Correction Card
- Magnetic heading -> Compass heading
- Specific to each airframe (not just aircraft type)
- Must be updated periodically

For	N	30	60	E	120	150
Steer	0	27	56	85	116	148
For	S	210	240	W	300	330
Steer	181	214	244	274	303	332

Worthless if heated windshield is turned on!

Plotter and E6B Introduction

- Plotter
- Flight planning tool to measure distances and courses
- Sectional: 1 inch -> $6.86 \mathrm{~nm} / 7.89 \mathrm{sm}$
- TAC: 1 inch -> $3.43 \mathrm{~nm} / 3.95 \mathrm{sm}$
- World Aeronautical Chart (WAC):

1 inch -> $13.7 \mathrm{~nm} / 16 \mathrm{sm}$

- E6B
- Evolved to make common calculations easier (slide rule)
- Two sides: computer side and wind side

- Waterproof and no batteries required

Using the Plotter

- Used to determine true course between two waypoints
- Different distance scales
- Key points:
- Use correct distance scale for chart type in use
- Use Meridians (NorthSouth Lines) for course calculations

Using the Plotter

Using the Plotter

Using the E6B: Computer Side

- Calculator is a simple way to calculate ratios between values
- Sliding inner ring normally represents TIME
- Outer ring normally represents VALUE of interest
- Fuel per unit time
- Distance per unit time

Using the E6B: Computer Side

Using the E6B: Wind Side

- Used to find impact of wind
- Wind correction angles
- Groundspeed
- Given partial information, useful for determining other missing information

1. True airspeed
2. Groundspeed
3. Wind correction angle
4. Wind speed
5. Wind direction

Source: Public Domain

Using the E6B: Wind Side

Wind Direction: 210°
Wind Speed: 20 knots
True Course: 180°
True Airspeed: 147 knots

Using the E6B: Wind Side

Wind Direction: 210°
Wind Speed: 20 knots
True Course: 180°
True Airspeed: 147 knots

Using the E6B: Wind Side

Wind Direction: 210°
Wind Speed: 20 knots
True Course: 180°
True Airspeed: 147 knots

Using the E6B: Wind Side

Wind Direction: 210°
Wind Speed: 20 knots
True Course: 180°
True Airspeed: 147 knots
Groundspeed: 129 knots
Wind Correction Angle: 4°

Navigation Log Form

Filled-out

SkyVector.com: free and easy

Waypoint	Route Allitude	wDir wSpd	TAS	Track	TH	MH	GS	Dist	ETE	ATE	Fuel	Fuel
$\text { (1). } \mathrm{K} \text { KBED }$		Temp (dev)		WCA	Var				ETO	ATO	EFR	AFR
	- ${ }^{\text {- }}$	$326^{\circ} \quad 14$	89	287^{*}	$293 *$	309°	77	6.0	4.8		0.0	
\rightarrow TOC	/	$-5^{\circ} \mathrm{C}\left(-19^{\circ}\right)$		+6**	$+16^{\circ}$				4.8		55.7	
wotrser	B.	$272{ }^{\circ} 15$	140	$287 *$	285°	301*	126	16.0	7.6		1.6	
UserFix	4500	$-2^{\circ} \mathrm{C}\left(-7^{\circ}\right)$		-2°	+16*				12		54.1	
worizer	- \square^{*}	$303^{*} 18$	140	286°	289^{*}	303°	122	32.2	16		3.5	
UserFix	4500	$-4^{\circ} \mathrm{C}\left(-9^{\circ}\right)$		$+2^{\circ}$	+14*				28		50.6	
\% ${ }^{\text {atrais }}$	- ${ }^{\text {P\% }}$	$\begin{array}{\|l\|l} \hline 325^{\circ} & 27 \\ \hline \end{array}$	140	286°	293°	307°	118	29.9	15 44		3.3 47.3	
TOD	4500	$-8^{\circ} \mathrm{C}\left(-13^{7}\right)$		$\frac{+7^{*}}{286^{\circ}}$	$+14^{\circ}$				44		47.3	
- KDDDH	- ${ }^{\circ}$	325° $-144^{\circ} \mathrm{C}\left(-20^{\circ}\right)$	155	$\stackrel{286}{ }+7^{\circ}$	293°	307°	131	6.2	2.8		0.0	
	\checkmark	$-14^{\circ} \mathrm{C}\left(-20^{\circ}\right)$		+7*	+14*				47		47.3	

Pilotage Summary

- Use winds aloft forecast to create a plan
- Correct heading based on passing over/ left/right of previously selected landmarks
- Fun skill, relationship to safety is unclear (Student pilot versus Commercial pilot)
- Still worth doing, but generate the navlog electronically!
- Knowledge Test: Built-in electronic E6B; plotter useful.

Section B

ADF NAVIGATION

This won't be on the test...

... still fun to learn about.
Non-directional beacons (NDBs) set up in the 1930s.

Pilot originally had to turn dial to hunt for station direction.

The Automatic Direction Finder (ADF) was a huge innovation.

At right: from Flying 1952. \qquad

Automatic Direction Finder

- Automatic Direction Finder (ADF) - Unit in the aircraft
- Non Directional Beacon (NDB) - Ground Station
- Indicator - Compass rose with needle, needle points to the station

Source: Public Domain

How to use the ADF

- Homing - Keep the needle pointed forward, airplane tracks curved path in wind
- Tracking - Needle offset due to wind, airplane tracks straight path over

Finding Magnetic Bearing

- Relative Bearing
- Number read on face of the ADF
- Magnetic Heading

- Number read from face of directional gyroscope
- Magnetic Bearing
- Magnetic heading TO the station

Magnetic Heading + Relative Bearing = Magnetic Bearing

Movable Card ADF

- Turn card to match heading of aircraft
- Read magnetic bearing under needle

Figure 30. ADF (movable card).

Section C

VOR NAVIGATION

VHF Omni-Directional Range (VOR)

- 1950s improvement to NDBs
- With no reference to a magnetic compass, receiver can determine the magnetic radial from station
- 360 radials (one for each degree)
- Can track "TO" or "FROM" station on a specific radial
- Can determine lat-long
 position by intersecting radials from two VORs

Three types of VORs

- VOR
- Only transmits azimuth information
- VOR-DME
- Distance Measuring Equipment (DME)
- Azimuth plus distance from VOR information
- VORTAC

- Military: Tactical Air Navigation (TACAN)
- Azimuth plus distance navigation
- Private Pilot Standpoint: Same Function as VOR/DME

Source: Public Domain

VOR Service Volumes

Low-Altitude

NOTE: All elevations shown are with respect to the station's site elevation (AGL). Coverage is not avallable in a cone of airspace directly above the facility.

Terminal

Source: Public Domain

Parts of the VOR

- Transmitter
- Receiver
- Indicator
- OBS - Omni Bearing Selector
- CDI - Course Deviation Indicator
- TO/FROM Flag

VOT: test on the ground

- At Hanscom: tune 110.0
- "Cessna 182": indication should be "180 TO"
- VOR Test Facility (VOT) frequencies buried in the Chart Supplement

Using VORs

NOTE:
Easiest method to determine VOR deflection is to imagine the airplane is pointed in same direction as OBS

OBS reading is NOT sensitive to actual aircraft heading

2. (Refer to Figure 20, area 3; and Figure 28.) The VOR is tuned to Elizabeth City VOR, and the aircraft is positioned over shawboro. Which VOR indication is correct?

OA. 2.
Ов. 8.
Oc. 9.

2. (Refer to Figure 20, area 3; and Figure 28.) The VOR is tuned to Elizabeth City VOR, and the aircraft is positioned over shawboro. Which VOR indication is correct?
A. 2.

Ов. 8
Oc. 9 .

VOR simulators

- LuizMonteiro.com (Flash)
- List of apps: $\underline{\text { AOPA }}$

Section D

GPS NAVIGATION

Global Positioning System (GPS)

- 1973 U.S. military idea: Navstar ("Navigation System Using Timing and Ranging")
- Broadcast time and position from multiple stations
- Each "time of flight" gives a position somewhere on a sphere
- Intersect 4 spheres to get an x, y, z location

Global Positioning System (GPS)

- Constellation of 32 satellites (2016); 31 in use
- Minimum of 5 observable from any point on earth
- 5 or more used for IFR operations

WAAS/SBAS

- Wide Area Augmentation System (WAAS): FAAestablished ground stations that gather correction information
- Generic name: satellite-based augmentation system (SBAS)

From Wikipedia: WAAS uses a network of ground-based reference stations, in North America and Hawaii, to measure small variations in the GPS satellites' signals in the western hemisphere. Measurements from the reference stations are routed to master stations, which queue the received Deviation Correction (DC) and send the correction messages to geostationary WAAS satellites in a timely manner (every 5 seconds or better). Those satellites broadcast the correction messages back to Earth, where WAAS-enabled GPS receivers use the corrections while computing their positions to improve accuracy.

A Garmin GTN 750

Combination of

- GPS
- NAV radio (VOR/ILS)
- COM radio

Garmin G1000 moving map

Avidyne PFD moving map

91.161 - DC Area

- When operating VFR within 60 NM of Washington, DC (DCA VOR), must have taken special awareness training
- Must have course certificate to show, but not onboard

After the navigation mistake...

- 91.25 - Aviation Safety Reporting Program
- Reports submitted to the Aviation Safety Reporting Program will not be used in enforcement against a pilot
- Exception: reports containing info about accidents or criminal offenses
- Program intended to encourage reporting of situations hazardous to aviation safety
- Subject to some important limitations, the FAA will actually waive fines or penalties for people who voluntarily report unintentional violations of the Federal Aviation Regulations through the program
- Run by NASA: http://asrs.arc.nasa.gov

Summary

- Pilotage
- NDBs monitored via ADF
- VOR
- GPS and moving map

Captain Sully: ""If I'm ever unable to access [GPS] or use the compass..., I could just keep Venus in the left front corner of the windshield and we would reach California."

Summary

- Pilotage
- NDBs monitored via ADF
- VOR
- GPS and moving map

Captain Sully: ""If I'm ever unable to access [GPS] or use the compass..., I could just keep Venus in the left front corner of the windshield and we would reach California."

Alternative: call ATC with "Request vectors SFO." ${ }^{54}$

MIT OpenCourseWare
https://ocw.mit.edu/

16.687 Private Pilot Ground School

IAP 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

