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Michelle Xu 
Daniel Pickard 

Department of Aeronautics & Astronautics 
M.I.T.

Question Points 

1 6 

2 10 

3 12 

Total: 28 

1 



16.001, M&S - Fall 2019 Homework #10 

i Problems M-10.1 [6 points] 
A turbine blade of length L = 0.5m in operation rotates around e2 with an angular 
velocity ω = 5000rpm, as shown in Figure 1. The blade is constrained from extensional 
motion by a ring housing (i.e. the displacement u(L) = 0 at the extremity A), but 
there is frictionless sliding between the rotating blade and the ring surface. The blade 
is made of a titanium alloy with a mass density ρ = 8470kg · m−3 , a Young’s modulus E 
= 80GPa, a cross-sectional area of A0 = 10cm2 and a yield stress of σy = 400MPa. 

L

e1

e2

ω

O A

Figure 1: Rotating blade 

1.1 (1 point) Write down the applicable governing equations and boundary conditions 
for this problem. What principles do they represent? Can this problem be solved 
by static considerations alone? 

Solution: The governing equations and boundary conditions are given below. The first 
three equations represent the principles of equilibrium, compatibility and constitutive law 
respectively. 

N 0 + P = 0 (1) 

�11 = u1 
0 (2) 

N = EA(x)u 0 1 (3) 

The boundary conditions are u(0) = 0 and u(L) = 0(zero displacement at both ends of the 
blade). The problem is statically indeterminate since (1) requires a boundary condition 
but we don’t know the stress at x = L. 
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1.2 (3 points) Integrate the resulting equation(s) and apply the boundary conditions 
to obtain the following solution field distributions along the axis of the bar: dis-
placement, strain, stress. 

Solution: Using (3) in (1) we obtain 

(EA0u1 
0 )
0 
+ p = 0 (4) 

p is the centripetal force acting on the blade p = ρω2xA0. With this (4) simplifies to this 
second order ODE: 

00 ρω2 

u1 + x = 0 (5)
E 

Integrating twice we get 
ρω2x3 

u(x) = − + Bx + C (6)
6E 

where B and C are arbitrary constants determined from the boundary conditions (u(0) = 0 
ρω2 L2 

and u(L) = 0) B = 
E 6 and C = 0. Now the displacement can be written in the following 

explicit form: 
ρω2x3 ρω2L2x 

u(x) = − + (7)
6E 6E 

The strain can be written as: 

ρω2x2 ρω2L2 

�11 = u 0 1 = − + (8)
2E 6E 

The stress can be written as: 

ρω2x2 ρω2L2 

σ11(x) = E�11(x) = − + (9)
2 6 
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1.3 (1 point) What is the maximum stress and where does it happen? Will the material 
yield plastically for the data given? 

Solution: The maximum stress happens at x = 0 and its value is: 

σmax ρω2L2 

11 = (10)
6 

For the data given, this gives σ11 
max ≈ 187MPa. This stress clearly is less than the yield 

stress of the material which means that the material will not yield plastically. 

1.4 (1 point) What is the maximum displacement and where does it happen? 

Solution: To find the location of the maximum displacement, we set u0 1(x) = �11 = 0 as 
shown below: 

ρω2x2 ρω2L2 L − + = 0 → x = √ 
2E 6E 3 

The maximum displacement can be found using x = √L in (7) and we obtain 
3 

(ρw2)L3 

u max = √ = 0.000233m (11)
9 3E 
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i Problems M-10.2 [10 points] 
(M14, M15) 

Consider the schematic below which depicts a nail being driven into a piece of wood. 
The nail has an elastic modulus E, length L, and a radius which varies linearly along 
its length according to the formula � � x1

R(x1) = R0 1 − (12)
L 

Along its length, friction between the nail and the wood creates a distributed load per 
unit length pdist(x1). The wood exerts a pressure normal to the surface of the nail 
proportional to the depth x1 according to the following expression: 

p0x1 
p(x1) = 

L 

The friction coefficient between the nail and wood is µ. 

e1

e2

L

2.1 (2 points) Find an expression for pdist(x1) in terms of the problems parameters. 

Solution: First, lets find the quantity dP (the infinitesimal axial load over area) for the
da 

nail. This can be described as: 

dP p0µ 
= p(x1)µ = − x1

dA L 
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integrate to get pdist(x1). Z 2π p0µ 
pdist(x1)dx1 = − x1rdθdx1

LZ0
2π p0µ 

pdist(x1) = − x1rdθ 
L0 

p0µ 
= −2π rx1

L 
p0µ 

= −2π R(x1)x1
L � � p0µ x1 

= −2π R0 1 − x1
L L� 

2 � 
p0µ x 

= −2π R0 x1 − 1 

L L 

The distributed force in the nail is then: � 
2 � 

p0µ x 
pdist = −2π R0 x1 − 1 (13)

L L 
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2.2 (2 points) Integrate the equilibrium equation in closed form to obtain the load 
distribution N(x1). Determine the force N required to drive the nail into the 
ground farther. 

Solution: Start with the equilibrium equation and integrate: � 
2 � 

p0µ x 
N 0(x1) = −pdist(x1) = 2π R0 x1 − 1 �L 

2 3 � 
L 

2πp0µR0 x x 
N(x1) = 1 − 1 + C1

L 2 3L 

Apply the boundary condition N(x1 = L) = 0. 

πp0µR0L → C1 = − 
3� � � �
2 3 2 32πp0µR0 x x πp0µR0L x 2x L1 1 1 1N(x1) = − − = πp0µR0 − − 

L 2 3L 3 L 3L2 3 

The force required to drive the pillar into the ground farther can be defined as N(x1 = 0). 

πp0µR0L 
N(0) = − 

3 
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2.3 (1 point) Determine the stress field along the nail just before it moves farther. 

Solution: The stress field can be found as follows: � � � � 
L−2 

x 2x x 2x 

2A( ) πR( ) R2 x xx x − − 1πR 1 11 1 00 

πp0µR0 − − L −
3
1 

N(x1) N(x1) L 3L2 3 p0µ L 3L 3 
σ11(x1) = = = � �2 = � �2 

L L 

2
1 

Notice that the numerator may be factored as 

2 3 � �2x 2x L 1 x11 − 1 − = − 1 − (L + 2x1) (14)
L 3L2 3 3 L 

Simplifying then gives the final stress field: 

−1 

3
1 

p0µ 3� 
� 
1�−�x���2 

(L + 2x1) 

1 

(15)σ11(x1) = 
� 
� 
� 
L 
����2

R0 1 − x
L 

2
1 

1 

1 p0µ
σ11(x1) = (L + 2x1)−3R0 
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2.4 (2 points) Determine the displacement field in the nail as it starts to move. 

Solution: Start with 
Eu0(x1) = σ11 

and integrate 

σ11 p0µ 
u 0(x1) = = (L + 2x1)

E −3R0E� 
2 � 

p0µ x 
u(x1) = Lx1 + 1 + c2−3R0E 2 

Applying the boundary condition u(0) = 0 → c2 = 0. Thus the displacement field becomes � 
2 � 

p0µ x 
u(x1) = Lx1 + 1 

−3R0E 2 
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2.5 (3 points) Find the maximum values of stress and displacement and their locations. 

Solution: Our expressions for displacement and stress are: � 
2 � 

p0µ x 
u(x1) = Lx1 + 1 

−3R0E 2 
p0µ

σ11(x1) = (L + 2x1)−3R0 

We can find the maxima of these functions by taking their derivatives and setting them 
equal to zero: 

p0µ 
u 0(x1) = (L + x1)−3R0E 

2p0µ
σ0 11(x1) = 

−3R0 

Unfortunately, neither of these functions have zero derivatives within our relevant region 
x1 ∈ [0, L]. Thus, the maximum values must occur at one of the endpoints x1 = 0 or 
x1 = L. By inspection, we find that the maximum (magnitude) displacement occurs at 
x1 = L and is given by: 

p0µL
2 

|u(x1)|max = 
2R0E 

The maximum (magnitude) value of the stress also occurs at x1 = L and is (compressive): 

p0µL|σ11(x1)|max = − 
R0 

Note: Recall that we imposed a boundary condition that N(x1 = L) = 0. However, even 
though the force in the nail at x1 = L is zero, the stress σ11(x1 = L) is non-zero (in fact 
the maximum compressive stress occurs here). This is because we have a singularity at 
x1 = L as both force N(x1) and cross-sectional area A(x1) of the nail go to zero here 

N(x1=L)(σ11(x1 = L) = → 0 ), leading to a strange and remarkable result of nonzero stress
A(x1=L) 0 

at this location! 
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i Problems M-10.3 [12 points] 
The vertical rod shown in Figure 2 is made from an isotropic homogeneous linear elastic 
material (Young’s modulus E, coefficient of thermal expansion α). It features a circular 
cross-section with varying radius r(x1) given by: r 

x1 
r(x1) = R 4 − 3 

L 

The rod is constrained at both its ends. It has the length L in the undeformed configura-
tion at the reference temperature Tref . It is subjected to a temperature change ΔT (x1) = 
ΔT0 + kx1 which varies linearly with the spatial coordinate x1. 

L
r(x1)

x1

∆T (x1)

Figure 2: Constrained rod subjected to a temperature change ΔT (x1). 
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3.1 (1 point) Is this system statically determinate? 

Solution: 

No, there are two reaction forces in the x1-direction (at x1 = 0 and at x1 = L) but only 
one useful equilibrium equation (force balance in the x1-direction) so the reaction forces 
cannot be determined from static equilibrium alone. 

3.2 (3 points) State the equation governing the axial displacement ū 1(x1) of the rod. 

Solution: 

The general expression for the axial force N1(x1) in a rod featuring a uniform Young’s 
modulus E and a uniform coefficient of thermal expansion α is: � � 

dū1
N1(x1) = EA(x1) − αΔT (x1) (16)

dx1 

In this problem, the temperature change is a function of x1 given by 

ΔT (x1) = ΔT0 + kx1. (17) 

The cross-sectional area of the rod is linear in x1 here: � � 
A(x1) = π(r(x1))

2 = πR2 x1
4 − 3 (18)

L 

The balance equation for the axial force N1(x1) is 

dN1 
+ p1(x1) = 0 (19)

dx1 

where the distributed axial load p1(x1) is zero here since no weight or other distributed 
loads were mentioned in the problem statement. It therefore follows that the axial force 
must be constant, 

N1(x1) = N0, (20) 

where N0 is the yet unknown constant axial force. Inserting Eq. (16) into Eq. (20) yields 
the equation � � 

dū1
EA(x1) − αΔT (x1) = N0, (21)

dx1 

or inserting the expressions for A(x1) and ΔT (x1), �� �� 
x1 dū1

EπR2 4 − 3 − α (ΔT0 + kx1) = N0. (22)
L dx1 
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The above equation can be readily solved for ū 1(x1) and N0. Strictly speaking, however, 
it is not the governing equation for ū 1(x1) (alone) since it also contains the unknown axial 
force N0. One could eliminate the latter by differentiating Eq. (21) with respect to x1: 

dA dū1 dA d2ū 1 dΔT 
E − E αΔT (x1) + EA(x1) − EA(x1)α = 0 (23)
dx1 dx1 dx1 dx1

2 dx1 

Inserting the expressions for ΔT (x1) and A(x1) into Eq. (23) and rearranging the terms 
would then yield the equation governing the displacement u1(x1) of the considered rod 
alone: � � � � 

4L d2ū 1 dū1 4L − x1 − = αk − x1 − α (ΔT0 + kx1) (24)
3 dx1

2 dx1 3 

3.3 (1 point) State the boundary conditions at x1 = 0 and x1 = L. 

Solution: 

The boundary conditions are: 

ū1(x1 = 0) 

ū1(x1 = L) 

= 

= 

0 

0 

(25) 

(26) 

3.4 (2 points) Determine the general solution to your governing equation. (You can 
use mathematical software like Mathematica or MATLAB to do this if you wish.) 

Solution: 
The second-order ODE in Eq. (24) can be solved analytically or using mathematical soft-
ware for the displacement field ū 1(x1). However, it is much easier to solve the first-order 
ODE in Eq. (22). Rearranging that equation immediately yields an expression for dū1/dx1, 

dū1 N0 
= � � + α (ΔT0 + kx1) , (27)

dx1 EπR2 4 − 3x
L 
1 

in which N0 is a yet unknown constant. Integrating that expression once with respect to x1 

yields � � � �L N0 x1 x1 
ū 1(x1) = − ln 4 − 3 + αx1 ΔT0 + k + C (28)

3 EπR2 L 2 

where C is a second unknown constant. Both N0 and C will be determined from the 
boundary conditions in the next part. 
As mentioned, the solution to Eq. (24) could have also been obtained using mathematical 
software such as the Symbolic Math Toolbox in MATLAB. This could have been done in 
the following way: 
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syms u(x) DeltaT0 k alpha L; 

eqn = (4*L/3-x)*diff(diff(u,x),x)-diff(u,x) ... 
== ... 
(alpha*k)*(4*L/3-x) - alpha*(DeltaT0+k*x); 

dsolve(eqn) 

3.5 (2 points) Find the displacement field ū 1(x1) in the rod by specializing the general 
solution you found in the previous part to the boundary conditions. 

Solution: Inserting the general solution (28) into the two boundary conditions stated 
above yields the values for the unknown constants N0 and C: 

N0 = − 
3π

R2αE (kL + 2ΔT0)
2 ln(4) 
1 

C = − αL (kL + 2ΔT0)
2 

Therefore, the complete solution to the displacement ū 1(x1) is: � � � � 
αL 1 3x1 αx1 

ū 1(x1) = (kL + 2ΔT0) ln 4 − − 1 + (kx1 + 2ΔT0)
2 ln(4) L 2� � 
αL 3x1 αx1 

= (kL + 2ΔT0) ln 1 − + (kx1 + 2ΔT0) (29)
2 ln(4) 4L 2 

3.6 (3 points) Compute the axial force field N1(x1), the stress field σ11(x1), and the 
strain field ε11(x1) in the rod. 

Solution: 
Strain field ε11(x1): 

dū1 α(kL + 2ΔT0) 1 
ε11(x1) = = α (ΔT0 + kx1) − 4 (30)

− x12 ln(4) dx1 3 L 

Axial force field N1(x1): 

N1(x1) = N0 = − 
3π

R2αE (kL + 2ΔT0) = const. (31)
2 ln(4) 

Respective stress field σ11(x1): 

N1(x1) 1 1 
σ11(x1) = = − αE (kL + 2ΔT0) 4 (32)

− x1A(x1) 2 ln(4) 
3 L 

Page 14 



  
 

 
 
 

     
  

 
 
 

             
 

MIT OpenCourseWare 
https://ocw.mit.edu/ 

16.001 Unified Engineering: Materials and Structures 
Fall 2021 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/terms
https://ocw.mit.edu

