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16.001, M&S - Fall 2020 Homework #9 

i Problems M-9.1 [0 points] 
Analysis of volumetric deformations: In this problem we will use the tools we 
learned in vector calculus (e.g. 18.02) and our recently acquired knowledge of the strain 
tensor to analyze volumetric changes during the deformation of the material and how 
they relate to the stress tensor. 

1.1 (1 point) Start by considering an infinitesimal prismatic volume element aligned 
with the cartesian axes whose sides are the vectors: dx = dx1e1, dy = dx2e2, dz = 
dx3e3. Show that its volume is given by the triple or mixed product: dV = (dx × 
dy) · dz 

Solution: Consider the volume element defined by the differentials: dx = 
dx1e1, dy = dx2e2, dz = dx3e3 as shown in the figure: 

x1

x2

x3

dx dy

dz

From the figure and the definition of cross product, we see that dx × dy = 
(dx1e1) × (dx2e2) = dx1dx2e3, which is a vector pointing in direction e3 of 
magnitude equal to the area of the base of the volume element. Then: (dx × 
dy) · dz = (dx1dx2e3) · dx3e3 = dx1dx2dx3 = V , as sought. 

01.2 (1 point)As discussed in class, the deformation is described by a vector field x = 
φ(x) (also known as a deformation mapping), which assigns each material point at 

0initial position x to the deformed position x . The undeformed differential vectors 
0 0 0are mapped to: dx = rφ·dx, dy = rφ·dy, dz = rφ·dz, where rφ = ∂φi ei ⊗ej∂xj 

is the gradient of the deformation. Give a geometric argument (use a sketch to 
support it) to show that the deformed volume dV 0 of the element dV is given by: 

dV 0 = (dx 0 × dy 0) · dz 0 
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Solution: 
x1

x2

x3

dx
′

dy
′

dz
′

As before, the cross product will 
give a vector orthogonal to dx0 dy0 whose magnitude is the area of one of the 

0bases of the deformed hexahedron. When dotted with dz we obtain a scalar 
which is this area multiplied by the projection of the length of dz0 on the plane 
normal, i.e. the height of the hexahedron. This gives the volume V 0 , as sought. 

1.3 (1 point) Replace the expressions of the deformed differentials to show that 
where 

∂φi
J = 

∂xj 

dV 0 = JdV , 

is the determinant of the matrix of partial derivatives of φ. This is the same 
expression you derived in vector calculus for the change of volume element when 
changing coordinate systems (e.g. from cartesian to spherical, etc.). 

Solution: � � 
∂φi ∂φi

dx 0 = rφ · dx = ei ⊗ ej · (dx1e1) = dx1ei
∂xj ∂x1� � 

0 ∂φi ∂φi
dy = rφ · dy = ei ⊗ ej · (dx2e2) = dx2ei

∂xj ∂x2� � 
0 ∂φi ∂φi

dz = rφ · dz = ei ⊗ ej · (dx3e3) = dx3ei
∂xj ∂x3�� � � �� � � 
∂φi ∂φj ∂φk

dV 0 = (dx 0 × dy 0) · dz 0 = dx1ei × dx2ej · dx3ek
∂x1 ∂x2 ∂x3� � 

∂φi ∂φj ∂φk 
= dx1dx2dx3 (ei × ej ) · ek

∂x1 ∂x2 ∂x3 | {z } � � 
�ijk 

∂φi ∂φj ∂φk 
= �ijk dx1dx2dx3

∂x1 ∂x2 ∂x3 | {z } 
dV 

where we have used the permutation tensor and its properties studied earlier in 
the class. In particular, recalling that for a 3x3 matrix |A| = a1ia2j a3k�ijk, the 
expression in parenthesis is exactly the determinant of the matrix of components 
of rφ, as sought. 
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1.4 (1 point) Now express the deformation mapping as the sum of the undeformed 
position x plus the displacement vector field u(x), as done in class, and express the 
volume change J in terms of the partial derivatives of u(x). Write the determinant 
in matrix form but do not expand it. 

Solution: from φ = x + u, we get: 

∂φi ∂ui 
= δij + 

∂xj ∂xj 
∂u1 ∂u11 + ∂u1 

∂x1 ∂x2 ∂x3∂φi ∂u2 ∂u2J = = 1 + ∂u2 
∂x1 ∂x2 ∂x3∂xj ∂u3 ∂u3 1 + ∂u3 
∂x1 ∂x2 ∂x3 

1.5 (1 point) Consider the case of small gradients ru � 1. By looking at your de-
terminant, make and argument for the only surviving first-order terms (i.e. those 
not contaning products of partial derivatives) without expanding the determinant, 
to show that this linearized version of J , and therefore V 0 , is 1 + r · u (note that

V 
this is one plus the divergence of u, not the gradient. Then, easily show that 
ΔV 
V = V 0−V 

V = r · u and that this corresponds to the trace of the strain tensor εkk. 
∂uiWe have thus identified that the volumetric deformation εv = εkk = 
∂xi 

Solution: It is clear from the expression of the determinant that upon its ex-
pansion the only terms that will not involve products of the gradient components 
will be: � �(linearized) ∂u1 ∂u2 ∂u3 ∂uk

J (linearized) V 0 = = 1 + + + = 1 + = 1 + r · u
V ∂x1 ∂x2 ∂x3 ∂xk 

ΔV V 0 − V V 0 
= = − 1 = r · u 

V V V 

1.6 (1 point) Use the constitutive relations for an isotropic linear elastic material in 
compliance form derived in class (Hooke’s Law) to prove that: 

ΔV 
= 

σkk(1 − 2ν) 
(1)

V E 

From here, define the bulk modulus K as the ratio between the hydrostatic pressure 
σkk hydrostatic pressure p = 
3 and the volumetric strain θ = εkk, i.e.: 

p = Kθ 

Prove that: 
E 

K = 
3(1 − 2ν) 
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Solution: Add the expressions of the normal strains in terms of the stresses 
for an isotropic linear elastic material: 

1 
ε11 = [σ11 − ν (σ22 + σ33)]

E 
1 

ε22 = [σ22 − ν (σ11 + σ33)]
E 
1 

ε33 = [σ33 − ν (σ11 + σ22)]
E 

1 
ε11 + ε22 + ε33 = [(σ11 + σ22 + σ33) − ν ((σ22 + σ33) + (σ11 + σ33) + (σ11 + σ22))]| {z } E 

εkk =θ 

1 
= [(σ11 + σ22 + σ33) − 2ν (σ11 + σ22 + σ33)]

E 
1 

= (σ11 + σ22 + σ33)(1 − 2ν)
E | {z } 

σkk=3p 

3(1 − 2ν)
θ = p | {zE } 

1/K 

1.7 (1 point) What happens when ν → 0.5? What can you say about the material 
behavior in that limit? 

Solution: Clearly, when ν → 0.5, the bulk modulus goes to ∞. This means 
that the material becomes infinitely stiff to volumetric deformations. This 
means that no matter how large the pressure is, the volume does not change 
(either in compression or dilatation). 
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i Problems M-9.2 [0 points] 
An orthotropic composite material is loaded in the plane with tensile stresses σa and σb. 
The fibers in this composite are at a 60◦ angle to the e1 axis. Additionally, two strain 
gauges aligned with the e1 (labeled a) and e2 (labeled b) directions are placed in the 
material. 

60
◦

σa

σb

2.1 (3 points) Suppose you previously measured the Young’s Modulus along the fiber 
direction to be E1 = 200 GPa. Determine the remaining in-plane elastic constants 
describing the behavior of this material if the applied stresses are 

σa = 100 MPa σb = 50 MPa 

and the measured strains (from the strain gauges) and the shear strain in the 
e1 -e2 plane are 

�a = 14 × 10−4 �b = 4 × 10−4 �12 = −5.6 × 10−4 

Hint: Remember the fact that the constitutive laws for orthotropic materials 
discussed in lecture apply only in material principal axes, i.e. they can only be 
used if the state of stress is described in directions aligned and perpendicular to the 
fibers. 

Solution: Begin by transforming the stress and strain components to be aligned with 
the direction of the fibers. Applying the stress transformation relations with σ11 = σa = 
100 MPa, σ22 = σb = 50 MPa, σ12 = 0: 

σa + σb σa − σb
σ̃11 = + cos(120◦) = 62.5 MPa 

2 2 
σa + σb σa − σb

σ̃22 = − cos(120◦) = 87.5 MPa 
2 2 

σa − σb
σ̃12 = − sin(120◦) = −21.65 MPa 

2 
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We may transform the strains in the same manner, recognizing that �11 = �a = 14 × 10−4 

and �22 = �a = 4 × 10−4 . We also have �12 = −5.6 × 10−4 . Thus, the transformation gives: 

�a + �b �a − �b
�̃11 = + cos(120◦) + �12 sin(120

◦) = 1.65 × 10−4 

2 2 
�a + �b �a − �b

�̃22 = − cos(120◦) − �12 sin(120
◦) = 16.35 × 10−4 

2 2 
�a − �b

�̃12 = − sin(120◦) + �12 cos(120
◦) = −1.53 × 10−4 

2 

Given the stress and strain components in the direction aligned with the fibers, apply the 
constitutive equations 

1 
�11 = (σ11 − ν12σ22)

E1 

1 
�22 = (σ22 − ν21σ11)

E2 
σ12

2�12 = 
G12 

to determine the elastic constants. We are given E1 = 200 GPa . Apply the first stress-
strain relation to solve for ν12: 

1 
�11 = (σ11 − ν12σ22)

E1 

σ11 − E1�11→ ν12 = → ν12 = 0.337 
σ22 

Apply the second stress-strain relation and the reciprocity relation to solve for E2: 

σ22 ν21 σ22 ν12
�22 = − σ11 = − σ11

E2 E2 E2 E1 
σ22→ E2 = → E2 = 50.28 GPa ν12�22 + 

E1 
σ11 

Apply reciprocity to solve for ν21 

ν21 ν12 
= 

E2 E1 

E2→ ν21 = ν12 → ν21 = 0.0847 
E1 

Finally, obtain G12 from the third stress strain relation 

σ12 σ12
2�12 = → G12 = → G12 = 70.75 GPa 

G12 2�12 
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Thus, we find the following constants: 

E1 = 200 GPa 

E2 = 50.28 GPa 

ν12 = 0.337 

ν21 = 0.0847 

G12 = 70.75 GPa 

2.2 (3 points) One failure mechanism of such composite materials is the buckling of 
fibers due to compressive stresses. Since the orthotropic constitutive relations 
relate stresses and strains in the composite material, one should be able to 
determine whether a fiber experiences a tensile or a compressive stress along its 
direction based on strains. Derive a condition that the strain gauge readings �a 

and �b, and the shear strain �12, should satisfy so that the stress along the fibers is 
not compressive. Your condition should include material properties as well. Note: 
Don’t use any of the numeric values for the elastic constants found in part (a), or 
assume the stress/strain components from the previous part. Solve symbolically in 
terms of �a, �b, �12 and the material properties. 

Solution: Our goal is to ensure that the axial stress along the direction of the fibers σ̃11 

is positive, and represent this in terms of strains. We begin with the first two stress-strain 
relations in the direction of the fibers: 

1 ν12
˜ = ˜ ˜�11 σ11 − σ22

E1 E1 

1 ν21
˜ = ˜ ˜�22 σ22 − σ11

E2 E2 

Solve for σ11 by eliminating σ22. This can be done by multiplying the second equation by 
ν21 

1 ν12
˜ = ˜ ˜�11 σ11 − σ22

E1 E1 

ν2ν21 21ν21�̃22 = σ̃22 − σ̃11
E2 E2 

and adding the two equations together (note the reciprocity relation ν21 = ν12 causes terms
E2 E1 

to cancel). We have: � � 
ν2 

�̃11 + ν21�̃22 =
1 − 21 σ̃11
E1 E2 
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Solving for σ̃11: 

˜ �22�11 + ν21˜ 
σ̃11 = � 

ν2 
� 

1 21−
E1 E2 

Applying the reciprocity relation and multiplying the numerator and denominator by E1 

gives the following form for σ̃11: 

E1(�̃11 + ν21�̃22)
σ̃11 = 

1 − ν12ν21 

The �̃11 and �̃22, which are the strains in the direction of the fibers, may be written in terms 
of �11 = �a, �22 = �b, and �12 using the transformation relations: 

�a + �b �a − �b
˜ = cos(120◦) + �12 sin(120

◦)�11 + 
2 2 � � √ 

�a + �b �a − �b 1 3 
= + − + �12

2 2 2 2 √ 
�a 3�b 3 

= + + �12
4 4 2 

�a + �b �a − �b
�̃22 = − cos(120◦) − �12 sin(120

◦)
2 2 � � √ 

�a + �b �a − �b 1 3 
= �̃22 = − − − �12

2 2 2 2 √ 
3�a �b 3 

= + − �12
4 4 2 

Thus, to prevent compression of the fibers, we must have 

E1(�̃11 + ν21�̃22) 
> 0 

1 − ν12ν21 

where 

√ 
�a 3�b 3 

�̃11 = + + �12
4 4 2 

√ 
3�a �b 3 

�̃22 = + − �12
4 4 2 
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i Problems M-9.3 [0 points] 
A composite material is subjected to the state of plane stress shown in Figure 1. The 
composite is a polymer matrix reinforced with unidirectional fibers that are aligned at 
α from horizontal. The Young’s moduli in the directions parallel and perpendicular to 
the fiber are referred to as E1 and E2. 

σ0σ0

e1

e2

α

Figure 1: Composite Materials State of Stress 

3.1 (1 point) Find the strain components in the basis (e1, e2), with the following 
numerical values: 

E1 = 180 GPa E2 = 70 GPa ν12 = 0.35 

G = 90 GPa α = 75◦ 

Solution: 

For this first part, the procedure follows three main steps: we rotate the stresses 
in a direction aligned with the fibers, then we use the constitutive relations for 
orthotropic materials to get the strains (still in a direction oriented with the 
fibers), and finally we rotate back the material to the initial basis. 

The stress state with respect to (e1, e2) is the folllowing: 

σ11 = σ0 

σ22 = 0 

σ12 = 0 

To find the axial stresses in the direction parallel and perpendicular to the 
fibers, we need to perform a stress transformation on the stress state. We use 
the following equations with a positive α since the rotation is counter-clockwise: 
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σ11 + σ22 σ11 − σ22
σ̃11 = + cos(2α) + σ12sin(2α)

2 2 
σ11 + σ22 σ11 − σ22

σ̃22 = − cos(2α) − σ12sin(2α)
2 2 

σ11 − σ22
σ̃12 = − sin(2α) + σ12cos(2α)

2 

The numerical values of the stresses in the new basis aligned with the fibers is 
the following: 

σ̃11 = 0.067 σ0 

σ̃22 = 0.93 σ0 

σ̃12 = −0.25 σ0 

Then we apply the constitutive relations for orthotropic materials. The equa-
tions are the following: 

1 
�̃11 = (σ̃11 − ν12σ̃22)

E1 

1 
�̃22 = (σ̃22 − ν21σ̃11)

E2 

σ̃12
˜ =�12 

2G 

We recall that the reciprocity relation gives the following relation: 

ν21 ν12 
= 

E2 E1 

Therefore, we find the value ν21 = 0.136, and the numerical results for the 
strains in the direction of the fibers are: 

˜ = −1.43 × 10−12σ0�11 

�̃22 = 1.31 × 10−11σ0 

˜ = −1.39 × 10−12σ0�12 

Finally, the rotation back to the initial basis (e1, e2) with an angle -α gives the 
following values for the strains: 

= −1.29 × 10−11σ0�11 

= −1.15 × 10−12σ0�22 

= −2.46 × 10−12σ0�12 
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3.2 (1 point) Interpret your results and explain how you think the material will 
deform. 

Solution: We observe that the in the basis (e1, e2), there is some shear strain, 
even though there was no shear stress in the same basis. Since the strain is 
negative, the material is likely to deform in a similar way as shown in Figure 2, 
the blue color indicating the deformed configuration. This can also be explained 
physically by the fact that E1 > E2, and therefore the material extends less in 
the direction parallel to the fiber than in the direction perpendicular to the 
fibers. 

Figure 2: Composite Materials State of Stress 

3.3 (1 point) Find the principal directions of � and σ. Do they coincide? Do they 
usually coincide in the case of orthotropic materials? What about isotropic 
materials? 

Solution: In the basis (e1, e2), there is no shear stress, so this is the principal 
direction for σ (in other words, αp

σ = 0). Concerning the strains, the principal 
direction are found by rotating the basis (e1, e2) with an angle αp such that: 

2�12 
tan(2αp) = 

�11 − �22 

α� = −9.62◦ 
p 

Since ασ
p and αp

� are not equal, the principal directions do not coincide. They do 
not coincide in general in the case of orthotropic materials, so we should not be 
surprised by the results. On the other hand, we saw in class that the principal 
directions of � and σ always coincide in the case of isotropic materials. 

3.4 (1 point) If the principal directions of � and σ do not coincide in this 
configuration, can you find a value of α for which they would coincide? (all other 
parameters being equal) 
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Solution: We are looking for the angles α at which we get αp
� = 0 (or at which 

�12 = 0). Using the same method as in the first part of the exercise without 
evaluating α at a particular value, we get: 

1 
σ̃11 = (1 + cos(2α))σ0

2 
1 

σ̃22 = (1 − cos(2α))σ0
2 

1 
σ̃12 = − sin(2α)σ0

2 

Then using the constitutive equations for isotropic materials, we get: 

1 σ0
˜ = (˜ [(1 − ν12) + cos(2α)(1 + ν12)]�11 σ11 − ν12σ̃22) = 

E1 2E1 

1 σ0
�̃22 = (σ̃22 − ν21σ̃11) = [(1 − ν21) − cos(2α)(1 + ν21)]

E2 2E2 

σ̃12 σ0
�̃12 = = − sin(2α)

2G 2G 

Finally, the last step is to rotate back the strain to the initial basis. We are 
only interested in the shear strain. Indeed, we are looking for the angles α at 
which �12 vanish. The formula for the shear strain is: 

�̃11 − �̃22
�12(α) = − sin(−2α) + �̃12cos(−2α)

2 

Pluging the values of �̃11, �̃22, and �̃12 yield to a complex equation that one can 
not solve analytically. Using an external software (Mathematica, Matlab,etc), 
we can find the values of α which cancel �12(α). By looking at the interval 
[−90◦; 90◦], we find 5 values of α that fulfill this condition: 

α = ±90◦ α = ±23.11◦ α = 0 
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i Problems M-9.4 [0 points] 
Consider the following orthotropic costitutive law for wood ⎞⎛⎫⎧ ⎫⎧1 −ν21 −ν31 0 0 0

E2 E3�11 σ11E1⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎠ 

−ν12 1 −ν32 0 0 0
E1 E3

�22 σ22⎪⎨ ⎪⎬ ⎪⎨ ⎪⎬E2 

−ν13 −ν23 1 0 0 0
E1 E2 

�33 

2�23 

σ33 

σ23 

E3= 10 0 0 0 0
G23 

10 0 0 0 0
G13 

2�31 σ31⎪⎩ ⎪⎭ ⎪⎩ ⎪⎭10 0 0 0 0 
G12 

2�12 σ12 

4.1 (1 point) The wood is in pure compression in the σ11 direction and it is in purely 
compressive strain in this direction as well. What can we conclude from this re-
garding the parameters in the constitutive law? 

Solution: The equations imply directly the following results 

ν12
2�22 = − σ11 = 0 

E1 

ν13
2�33 = − σ11 = 0 

E1 

These imply that ν21, ν31, ν12 and ν13 are zero. They do not imply that all the 
poisson ratios are zero. 

4.2 (1 point) Now consider the wood as being a part of the side of a tree. The e1 

direction points up away from the ground and the e2 direction points radially into 
the tree. Assume that all the poisson ratios are not equal to zero and are strictly 
positive. Further assume that none of the three young’s moduli are equal so that 
this is an orthotropic material. If you had the ability to select the three youngs 
moduli of the wood on the outside of this tree, which would you make largest and 
smallest in order to allow the tree trunk to hold the largest vertical loads with 
minimal straining? It might help to consider that the material on the outside of 
the tree needs to contain all the material inside the core just like a pressure vessel 
contains a gas. 

Solution: In order to make the tree strongest with respect to loadings σ11, E1 

should be chosen as the largest youngs modulus. This will prevent the tree from 
compressing vertically under vertical loading. Because the poisson’s ratio’s are 
all selected to be positive this compressive stress will produce components of 
positive strain in the �22 and �33 components. We can imagine that at the center 
of this tree where the idea of a radial direction is not well defined that the wood 
in the center of the horizontal plane of the trunk would be in a state of uniform 
and positive strain in both directions. In order to contain the pressure induced 
by the poisson effect and the vertical loading, a large youngs modulus in the 
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hoop direction that is not the radial direction is prefered. The smallest youngs 
modulus would be in the radial direction. Many woods have these material 
properties. 

4.3 (1 point) If you cut down this tree you can measure the youngs modulus E1 by 
placing the wood in pure tension oriented along the vertical direction. You put the 
material under 10 MPa of stress along the grain and observe 800 microstrain along 
the grain. None of the other strain gages read any strain so you conclude that your 
test was in the principle axis of the material. Find the largest youngs modulus of 
the wood. 

Solution: The youngs modulus is simply the stress divided by the strain which 
yields a modulus of 12.5 GPa. 

4.4 (1 point) Your test to find the other two youngs moduli does not go as smoothly. 
You take a piece of material that is thin in the e1 direction and you place it under 
10 MPa of uniaxial tension in some x direction. The tree is not a perfect circle 
and you have trouble orienting your loading in the direction that is the radial 
direction. Consequently, your strain gages find that the material strained 1000 
microstrain in the x direction and -800 microstrain in the other y direction. It also 
strained 50 microstrain in the direction 45 degrees off from the x axis and the y 
axis. Compute the principal strains in your test and the angle of rotation needed 
to attain a frame of principle strain. Are the principle stresses and strains in the 
same frame? Comment on if you can find the other two moduli. 

Solution: Using the shear strain transformation equation we can compute the 
angle of rotation needed to get this state of strain into the state of principle 
strain 

1000 − (−800)
0 = − 

2 
sin(2θ) + 50 cos(2θ) 

50 
900 

= tan(2θ) 

θ = 1.5899 

From this we can find that the principle strains are 1000.97 and -800.97 micros-
train so we are very close to a state of principle strain. The frame of principle 
stress and strain do not need to line up if the constitive law is not isotropic. In 
this case, the wood has a prefered direction that it likes to deform in, and if 
you accidentally stress the wood at some slight angle to this direction then the 
wood will strain slightly more in the components that areclose to the direction 
in which it is less stiff. 
The state of stress in this axis is three values as is the state of strain. So this test 
gives us 3 pieces of information regarding our constitutive law. For orthotropic 
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2D materials we have 5 parameters and one constraint from the poisson ratio 
terms being equal. This is four independent unknowns plus the unknown angle 
of the principle axis of the material. So we need to get two more independent 
pieces of information about this material to really understand its constitutive 
law. 

4.5 (1 point) Another student takes a sample of identical material and cuts it at some 
strange angle and proceeds with a much more complicated calculation of the kind 
that you just did. They compute that the youngs moduli in the plane of the wood 
that they have cut are 9 and 15 GPa. Is this possible given your results? 

Solution: No they cannot find a youngs modulus larger then the largest prin-
ciple moduli by cutting in a different plane. The principle axis are the stifffest 
and least stiff directions in the material, so there is no stiffer direction. 

4.6 (1 point) You now take your sample and perform a different uniaxial tension test in 
the y direction again using 10 MPa. You measure the following strains: 900 micro 
strain in the y and -850 in the x. You also see -300 microstrain of shear. You are 
concerned these results are incorrect since the shear strain is so large and you worry 
this might have caused the test to be performed with some nonzero shear stress. Is 
it possibly to identify if these measurements are consistent? 

⎫⎬⎭ 

⎫⎬⎭ 

⎧⎨⎩ 

⎧⎨⎩ 

⎫⎬ ⎭ 

⎞⎠ 

⎞⎠ 

⎧⎨ ⎩ 

⎞⎠ 

⎛⎝ 

⎛⎝ 

⎫⎬ 

⎫⎬ 

⎛⎝ 

⎫⎬ 
⎧⎨ ⎩ 

Solution: Simply state the constitutive law in the rotated frame that is needed 
to get to the materials axis 

1 −ν21�11 E1 E2 
0 σ11 

ν 1− 12 

⎧⎨⎩ 

⎧⎨⎩

�22⎭ 
= E1 E2 

0 σ22 

�12 0 0 
2G 
1 
12 

σ12 

1 −ν21 10100 + 900 cos 2θ + 50 sin θ 0 (1 + cos 2θ)E1 E2 2 
−ν12 1 10100 − 900 cos 2θ − 50 sin θ 0 (1 − cos 2θ)⎭ 

= E1 E2 2 
1 −10−900 sin 2θ + 50 cos θ 0 0 2 (sin 2θ)

2G12 

Then for the second tension test 

1 −ν21 1025 − 875 cos 2θ − 300 sin θ 0 (1 − cos 2θ)E1 E2 2 
−ν12 1 1025 + 875 cos 2θ + 300 sin θ 0 (1 + cos 2θ)⎭ 

= E1 E2 2 
875 sin 2θ + 300 cos θ 0 0 1 10

2 (sin 2θ)
2G12 

Here you state the constitutive law in some frame in terms of the angle θ that 
is needed to rotate to the material principle axis. We can solve this system to 
find E1, E2, ν12, ν21, G and θ. If we find that the following condition is not 
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satisfied then we can conclude these measurements are inconsistent and that 
perhaps some shear stress was present during the test 

ν21 ν12 
= 

E2 E1 
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i Problems M-9.5 [6 points] 
An orthotropic composite material is loaded in the plane with tensile stresses σa and 
σb. The fibers in this composite are at a 60◦ angle to the e1 axis. Additionally, two 
strain gauges aligned with the e1 (labeled a) and e2 (labeled b) directions are placed in 
the material. 

60
◦

σa

σb

5.1 (3 points) Suppose you previously measured the Young’s Modulus along the fiber 
direction to be E1 = 200 GPa. Determine the remaining in-plane elastic constants 
describing the behavior of this material if the applied stresses are 

σa = 100 MPa σb = 50 MPa 

and the measured strains (from the strain gauges) and the shear strain in the 
e1 -e2 plane are 

�a = 14 × 10−4 �b = 4 × 10−4 �12 = −5.6 × 10−4 

Hint: Remember the fact that the constitutive laws for orthotropic materials 
discussed in lecture apply only in material principal axes, i.e. they can only be 
used if the state of stress is described in directions aligned and perpendicular to the 
fibers. 
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5.2 (3 points) One failure mechanism of such composite materials is the buckling of 
fibers due to compressive stresses. Since the orthotropic constitutive relations 
relate stresses and strains in the composite material, one should be able to 
determine whether a fiber experiences a tensile or a compressive stress along its 
direction based on strains. Derive a condition that the strain gauge readings �a 

and �b, and the shear strain �12, should satisfy so that the stress along the fibers is 
not compressive. Your condition should include material properties as well. Note: 
Don’t use any of the numeric values for the elastic constants found in part (a), or 
assume the stress/strain components from the previous part. Solve symbolically in 
terms of �a, �b, �12 and the material properties. 
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i Problems M-9.6 [4 points] 
A composite propeller blade is being designed using fiber reinforced composites. The 
blade must be able to accelerate from a low RPM to a high RPM which induces a large 
shear stress on the fibers. Towards the tip the blade sweeps backwards and so the 
fibers are bent and do not run in the radial direction. In fact, the fiber angle off of the 
radial direction varies in the following manner as a function of the radial coordinate 
along the blade 

α = α1R 

Assume the shear loading on the blade varies in the following manner where the e1 

direction is the radial coordinate 

σ12 = (Ro − R)(τ0) 

σ11 = σ0(R0
2 − R2) 

The constitutive law for this material in the fiber direction is given by ⎛ ⎞⎧⎨ 
⎫⎬ 

⎧⎨ 
⎫⎬1 −νyx 0�xx σxxEx⎜⎝ ⎟⎠ 

Ey 

−νxy 1 0
Ex 

�yy σyy ⎭ 
= ⎩ Ey ⎩ ⎭10 0 

2Gxy 
�xy σxy 

6.1 (2 points) Write the equations to find the strain components in the frame of the 
radial coordinate system (Not the fiber frame). Explain how you would use these 
equations to compute the values of the strains. 
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6.2 (2 points) Assuming the radial stress is much larger then the shear stress, where 
would you expect to see high strains (�11 and �12) in the radial, theta coordinate 
system on the propeller blade? What parameters influence these values? 
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