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16.001, M&S - Fall 2020 Homework #8

(O Problems M-8.1 [5 points]
You've been tasked with selecting the material for the grid fins on SpaceX’s next launch
vehicle, Starship. These grid fins will be significantly larger than the ones on the Falcon
9 (7x3 m? vs. 2x1.2 m?), making cost a much bigger concern. The grid fins should be
light, cheap, and capable of surviving multiple exposures to high temperatures (>400
°C). They also need to be stiff so that they don’t deflect during reentry.

In each of the following materials selection problems, list the function, objective(s),
constraints, and materials indices with which ranked the different materials. You can
use this reference to determine the appropriate materials index. Show the Property
Diagram(s) that you used to make your decisions with the appropriate materials index
contour overlaid. Indicate on the property diagram the best 2 or 3 materials options
using the labeling function.

Solution: Function: Grid fins on F9 booster
Objective(s): Minimize cost and mass

Constraints: e Must have a maximum service temperatures greater than 500 °C e Should be
stiff to minimize elastic deflection e Easy to process into bulk forms

Notes + materials indices: We are trying to minimize two objectives in this problem — cost
and mass. These objectives often conflict, since stiff, low-density materials also tend to be
expensive. Ashby gives a thorough discussion of how to handle such multi-objective materials
selection problems in this excellent manuscript. The constraint on processability immediately
suggests focusing on metals, which tend to be easy to form into large shapes. As discussed in
recitation, grid fins can be approximated as panels. The relevant material indices are therefore
EY3/p and EY/3/(pCm). Consider the property diagrams E vs. p, E vs. pCm, and EY/3/p vs
E'3/(pCm) shown below. The relevant material indices have been overlaid on the E vs. p and
E the vs. pCm diagrams. Beryllium and titanium alloys are attractive candidates on a mass
basis if cost is not an issue. Steels become the obvious choice if cost is a concern (Note: cast
iron, a high carbon ferrous alloy, is way too brittle for this application, while stainless steels
offer a good combination of ductility, high temperature strength, and oxidation resistance). The
property diagram E'/3/p vs EY/3/(pCm) shows the envelope of material indices for all metals,
highlighting the tradeoff between cost and mass. Low alloy steels and stainless steels seem like
they have a good balance of high stiffness, low cost, and low density. You will have to dig deeper
into the documentation before making a final selection. If temperature wasn’t a constraint, then
magnesium alloys would be attractive grid fin materials. However, magnesium tends to burn
aggressively in high temperature oxidizing environments which is why it is used in fireworks.
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(O Problems M-8.2 [5 points]
The extensional and shear strains at a point of a loaded structure have been measured
with respect to a particular set of cartesian basis vectors. The measured values are

€11 = —800 x 107° (1)
€29 = —200 x 1076 (2)
Y12 = —600 x 107° (3)

2.1 (1 point) Draw Mohr’s circle for this state of strain

Solution: The center and radius of the circle are C' = 2792 = —500 and R = \/(%)2 +¢

respectively, where €15 = 332, Thus, Mohr’s circle for this strain state is a circle centered

at (—500,0) with radius 300/2.

5 €12 X 1074
A

20
45°

>c x 1074

0 -9 8 7 -6 5 -4 -3 2 - 0

2.2 (2 points) Find the principal strains and principal directions. Show also the de-
formed shape of an element which originally was a parallelepiped with its faces
parallel to these axes
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Solution: The principal strains are

€1 =—T5.7x107% ¢;; = —924.3 x 107° (4)

The principal directions are 2ay, = 45°, 2q, = 225° — «a,, = 22.5°, ap, = 112.5°

2.3 (2 points) Find the maximum shear strains and corresponding directions. Show
also the deformed shape of an element which originally was a parallelepiped with
its faces parallel to these axes

Solution: pq are the maximum shear axes. The maximum shear strain are v, = +2 X
424.3 x 107% = £848.6 x 107%. The maximum shear directions are 20 = —45°, 20 = 135°
— 0 = —22.5°, § = 67.5° The deformed shape of an element which originally was a
parallelepiped with its faces parallel to these axes is shown as follows,

q

=
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Figure 1: T-V rosette strain gauge

(O Problems M-8.3 [8 points]
Consider the T-V rosette shown in Figure 1. The measured strains along the directions
of the individual strain gauges are respectively e; = 910u, es = 990u, e = 310u, and
€4 = 190/L
3.1 (2 points) Use the equations of transformation of strain components in 2D as many
times as needed, to relate the measured strain components and those in the cartesian
system € = (e, €2)

Solution: The measured data ey, e, ez and e4 correspond respectively to the values of
the strains €7, for the angles 6, = 0°, 05 = 45°, 63 = 90° and 04 = —45°. We can use the
expression for transforming strain components to the axial €}, component in the new axis
repeatedly for each datum and its corresponding angle, which leads to the following system
of equations:

N € —i— € €11 — €
e = e6) = 12 +< U 22) cos(0) + €12 sin(0)
. €11 —l— €22 511 — €22
ey = €1,(02) = + c0s(90) + €12 sin(90)
, €11 + €22 511
es = ¢€1,(03) = + cos(180) + €12 sin(180)
. €11 -I— €22 511 — €22
e, = e11(0y) = + cos(—90) + £12sin(—90),

which reduces to

€1 = €1

€y = =€11+ €2+ €12
2 2

€3 = &2
1 n 1

€4 = ZE€11 T €22 — €12
2 2 ’
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3.2 (2 points) Can you determine the strain components €11, €99, €12 from these equa-
tions? Do you have insufficient or redundant information? How can this be useful
from the experimental standpoint?

Solution: The system is clearly overdetermined as it has three unknowns and four equa-
tions. This overdetermination provides some means of reducing the uncertainty of the
experimental measurements: instead of finding the exact solution to the system which
most likely won’t exist unless the four values are mutually consistent, one can try to find
the best approximation to the quantities of interest from the given data.

It makes a lot of sense to have more measurements than the minimum required. For in-
stance, if one of the gauges is damaged, the extra measurements are very useful (and maybe
essential) to determine the state of strain. If all the gauges are working, the redundant
information can be used to compensate the experimental errors.

3.3 (3 points) Use a least-squares approach to obtain the “best approximation” to the
strain components €11, €90, €12 in terms of the measured data. Hint: as it name
indicates, the least squares method finds a solution of the overdetermined system
by minimizing the sum of the square of the errors incurred in the satisfaction of
each equation.

Solution: The sum of the square of the errors incurred in the satisfaction of each equation
reads:

1 1 2
S = (61 — 811)2 + |:62 — (5611 + 5622 + 812)} +

1 1 2
(es — 522)2 + {64 - (5511 + 5522 — 512)] .

Computing the derivatives of S with respect to e11, 99,12 and setting them to zero we
obtain:

—eg —eg—2(ey —e11) + 11 +E22=0

—eg —eq+e11 —2(e3 —€92) + 22 =10

1 1 1 1
—2 (e — 5511 —E&12 — 5522 +2(es— 5811 + €10 — 5522 =0,

which simplifies to:

3811 + €99 = 261 +e2+ €4
€11 + 3522 =e9 + 263 + eyq

2e19 = eg — ey,
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and results in:
1
€11 = 1(361 + €2 —e3 — 64)
1
E99 = Z_L(_el + e9 + 363 + 64)
1

E12 = 5(62 — 64).

After replacing the measured values: e; = 910u, es = 990u, e = 3104, and e, = 190, we
obtain:

e11 = 900y, £25 = 3001, €12 = 400y

More generally, the overdetermined system of equations can be written in matrix form as

1 0 0 €1
1/2 1/2 1 S I
0 1 0 2T
1/2 1/2 —1 | L2 eq

If we have an over-determined system Ax = b, where dim(A) = M x N, dim(x) = N x 1,
dim(b) = M x 1, and M > N, we can find the solution x that minimizes the square of the
norm of the error (least-squares approach) by solving the system (ATA) x = ATb. Note
that in this new system of equations AT A is a nonsingular matrix with dim(ATA) = NxN.
For our problem the system of equations becomes

310 £11 210 1 Zl
1 30 esr | =101 2 1 62
00 1 €19 02 0 —2 3

€4

By inverting the matrix A7 A we are able to calculate directly the solution of the problem
as X = (ATA)_1 ATb, which for this specific case takes the form

c1 31 -1 Zl
g | == -1 1 3 1 62
€12 0 2 0 —2 ez

3.4 (1 point) Find the orientation of the principal strain directions, and the principal
strains
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Solution: The principal strains and strain directions are respectively given by the eigen-
values and the eigenvectors of this tensor, i.e. £* = RT¢R, where

- [gn 07  [1100n 0
10 e T 0 100’

and

—0.8944 0.4472
—0.4472 —0.8944]| "

R%[

The values of the strain components can be verified through the invariants of the strain
tensor, i.e. Iy = I = 1200p and I, = I; = 11000043
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(O Problems M-8.4 [3 points]
(M.O. M11)

The state of strain in a composite is determined by a rectangular strain gauge rosette
attached to the surface, as shown in Figure 2. The three strain gauges (a, b, & c)
are arranged at angles o, = 0° ap = 45°, & a. = 90°. The gauges read ¢, = 20 X
107% ¢, = 55 x 107%, ¢, = —60 x 107%. The composite is a polymer matrix reinforced
with unidirectional fibers that are aligned at 120° from horizontal.

3

Figure 2: Composite material with 3 strain gauges

Determine the normal and shear strain components in the directions aligned and per-
pendicular to the fibers.

Solution:

There are two different ways to approach this problem. The first is to transform the strain such
that e; and ey are horizontal and vertical, respectively. The second approach is to transform
the stress directly to the orientation of the fibers.

Method 1
First, transform the strain so that e; and es are aligned to the horizontal and vertical. Use the
equations below.

€11 T €22 €11 — €29

€a = 5 5 cos(2ay) + €12 sin(2ay,)
o = U —12_ 2 | ; €22 cos(2a) + €12 8in(2ay)
€e = ‘i —; 2 1 g 22 cos(2a,) + €12 sin(2av)

Simplifying the equations with the given angles.

€qa = €11
€11 1+ €22
€ = ——— + €12
2
€c = €22
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Solving the system of equations yields

€11 = 20 x 1076
€9 = —60 x 10_6
€12 = 75 X 10_6

Next, transform the strain so that it is aligned with fiber using the equations

- €11 + €22 €11 — €22

€11 = 5 + 5 cos(2ay) + €12 8in(2ay)

- + - )

€99 = ‘i 5 €22 _ fu 5 €22 cos(2a) — €12 8in(2ay )
€12 = ——611 ; £22 sin(2a1) + €12 COS(2061)

where a; = 120°. This results in

€11 = —104.95 x 1076
€22 = 64.95 X 10_6
€1p = —2.86 x 1076

To transform the stress to be aligned perpendicular to fibers change a; to be 30° in the equations
for strain transformation above. They will result in

gn = 64.95 X 1076
€99 = —104.95 x 1076
€10 = 2.86 x 107

Method 2
To compute the direct transformation start with the equations

€11 T €22 €11 — €92

€ = 5 5 cos(2a) + €2 8in(2ay)
€ = u ;— 2 ; €22 cos(2ag) + €128in(2az)
€ = Silnes TR cos(2a3) + €12 8in(2a3)

2 2

In the case of when the strain is aligned with the fibers the angles are

a1 = —1200
Qg = —75°
g3 = —30°
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The angles are measured from the orientation of €; (120° in the first case and 30° in the second)
to each gauge in the rosette. Plugging these angles into the equations above and solving the
system of equations results in

€11 = —104.95 x 1076
€22 = 64.95 X 1076
€1p = —2.86 x 1076

To compute the components of strain when aligned perpendicular to the fibers, the angles are

a1 = —300
Qg = 150
3 = 60°

which result in

gn = 64.95 X 1076
€99 = —104.95 x 1076
€10 = 2.86 x 1076

Notice that both methods result in the same solution. Also, notice the two scenarios have a
difference in orientation of 90°. When you go between the the two cases €; and €55 switch and
the the sign of €;5 switches.
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(O Problems M-8.5 [3 points]
(M.O. M11)
The state of strain at a point in an aluminum component of the fuselage of an airplane
is measured with a delta strain gauge rosette (See Figure 3, where each gauge is a side of
the triangle) of three strain gauges a, b, ¢ arranged at angles o, = 0, a, = 60, o, = 120°.
The strain gauges read e, = 15 x 107%, ¢, = 60 x 1075 ¢, = 80 x 1076,

N

L Y

Figure 3: Delta Rosette strain gauge

Determine:

5.1 (1 point) All the components of strain in cartesian axes ej, es respectively aligned
with the horizontal and vertical direction

Solution:
Using the equations below we can solve for the state of strain where the Cartesian axes are
align with the horizontal and vertical directions:

€1 + €99 €11 — €22 COS(Zaa) + €12 Sin(Zaa)

Ty 2
€p = €11 ;— €22, 1T 2 cos(2ay) + €12 8in(2ay,)

€11 + €22 €11 — €22
2 2

€, = cos(2a.) + €12 sin(2a..)

Substituting in the values above

15 % 1076 = €11
60 x 107% = .25¢1, + .75e90 + 866612
80 x 1076 = .25611 + .75622 — .866612

Solving the system of equations yields

€11 — 15 % 1076
€99 = 88.3 x 1076
€10 = —11.55 x 107

5.2 (1 point) The principal strains €; 7, their directions ay r;
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Solution:
The equations below find the principal strains and the orientation of the element.

2¢
tCLTLQa[’[[ = 12
€1 — €9
€1+ €9 €] — €2
erir=—5— * \/(—2 )%+ €hy

substituting in the given parameters yields

ar ;= 8.74°
€12 =0
e =13.22 x 1076
err =90.1 x 107°

Alternatively, this problem could be completed using Mohr’s circle for strain. Mohr’s circle
can be defined using the equations below(see Figure 4).

2
R= \/(¥) + e, = 38.426 x 107

Center : C(%,O) = (51.65 x 1075, 0)

Using Mohr’s circle, the principal stress can be found by

er,err = Center + R

€12 = 0
So the stresses are

e;=13.22 x 1076
e;r=90.1x107°
€12 = 0

The orientation is calculated from the same equation as above, and thus it is the also the
same.

maxr

5.3 (1 point) The maximum shear strains 77" and their directions a;

Solution:
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The equations below find the maximum shear strain and the orientation of the element.

tan2a, = B
2619
Tmaz €1 — €2

5 = i\/(T)Q + ety
¢ € + €

avg — 9

Substituting the given parameters yield
s = —36.26°

Ymaz = £76.85 x 1076
€avg = 51.65 x 107°

Once again this problem could be completed using Mohr’s circle for strain (see Figure 5).

€avg = Center

Tmazx
==+R
2

plugging in the given values results in

€ang = H1.65 x 107°

T~ 3843 X 107"

which evaluate to

€avg = 51.65 x 107°
Ymaz = —76.85 x 107°

The orientation angle from Mohr’s circle is calculated from the same equation above, so
the orientation angle is the same.
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€11,€12) = (15 x 1076, —11.545
(e11,€12) = ( (e11,0) = (90.1 x 105, 0)

>

(e1,0) = (13.22 x 10~F,

R=1384x10"6

[

Figure 4: Mohr’s Circle, principal state

(€avgs €12) = (51.65 x 1076, —38.42 x 1076)

20

(e11,€12) = (15 x 1076, —11.545 Kk 10~9)

>

C(€avg,0) = (51.65 x 10~ 0)

— —6
R =38.4x10 (€22, —€12) = (88.3 x 1076,11.545 x 1076)

Y (€avg, —€12) = (51.65 x 1076,38.42 x 1076)

[N

Figure 5: Mohr’s Circle at Maximum Shear State
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