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16.001, M&S - Fall 2020 Homework #8 

i Problems M-8.1 [5 points] 
You’ve been tasked with selecting the material for the grid fins on SpaceX’s next launch 
vehicle, Starship. These grid fins will be significantly larger than the ones on the Falcon 
9 (7x3 m2 vs. 2x1.2 m2), making cost a much bigger concern. The grid fins should be 
light, cheap, and capable of surviving multiple exposures to high temperatures (>400 
◦C). They also need to be stiff so that they don’t deflect during reentry. 

In each of the following materials selection problems, list the function, objective(s), 
constraints, and materials indices with which ranked the different materials. You can 
use this reference to determine the appropriate materials index. Show the Property 
Diagram(s) that you used to make your decisions with the appropriate materials index 
contour overlaid. Indicate on the property diagram the best 2 or 3 materials options 
using the labeling function. 

Solution: Function: Grid fins on F9 booster 

Objective(s): Minimize cost and mass 

Constraints: • Must have a maximum service temperatures greater than 500 °C • Should be 
stiff to minimize elastic deflection • Easy to process into bulk forms 

Notes + materials indices: We are trying to minimize two objectives in this problem – cost 
and mass. These objectives often conflict, since stiff, low-density materials also tend to be 
expensive. Ashby gives a thorough discussion of how to handle such multi-objective materials 
selection problems in this excellent manuscript. The constraint on processability immediately 
suggests focusing on metals, which tend to be easy to form into large shapes. As discussed in 
recitation, grid fins can be approximated as panels. The relevant material indices are therefore 
E1/3/ρ and E1/3/(ρCm). Consider the property diagrams E vs. ρ, E vs. ρCm, and E1/3/ρ vs 
E1/3/(ρCm) shown below. The relevant material indices have been overlaid on the E vs. ρ and 
E the vs. ρCm diagrams. Beryllium and titanium alloys are attractive candidates on a mass 
basis if cost is not an issue. Steels become the obvious choice if cost is a concern (Note: cast 
iron, a high carbon ferrous alloy, is way too brittle for this application, while stainless steels 
offer a good combination of ductility, high temperature strength, and oxidation resistance). The 
property diagram E1/3/ρ vs E1/3/(ρCm) shows the envelope of material indices for all metals, 
highlighting the tradeoff between cost and mass. Low alloy steels and stainless steels seem like 
they have a good balance of high stiffness, low cost, and low density. You will have to dig deeper 
into the documentation before making a final selection. If temperature wasn’t a constraint, then 
magnesium alloys would be attractive grid fin materials. However, magnesium tends to burn 
aggressively in high temperature oxidizing environments which is why it is used in fireworks. 
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i Problems M-8.2 [5 points] 
The extensional and shear strains at a point of a loaded structure have been measured 
with respect to a particular set of cartesian basis vectors. The measured values are 

�11 = −800 × 10−6 (1) 

�22 = −200 × 10−6 (2) 

γ12 = −600 × 10−6 

2.1 (1 point) Draw Mohr’s circle for this state of strain 

(3) 

q
�11+�22 ( �11−�22Solution: The center and radius of the circle are C = 

2 = −500 and R = 
2 )2 + �2 

12 

respectively, where �12 = γ 
2 
12 

√. Thus, Mohr’s circle for this strain state is a circle centered 
at (−500, 0) with radius 300 2. 
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2.2 (2 points) Find the principal strains and principal directions. Show also the de-
formed shape of an element which originally was a parallelepiped with its faces 
parallel to these axes 
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Solution: The principal strains are 

�I = −75.7 × 10−6, �II = −924.3 × 10−6 (4) 

The principal directions are 2αp = 45◦ , 2αp = 225◦ → αp = 22.5◦ , αp = 112.5◦ 

2.3 (2 points) Find the maximum shear strains and corresponding directions. Show 
also the deformed shape of an element which originally was a parallelepiped with 
its faces parallel to these axes 

Solution: pq are the maximum shear axes. The maximum shear strain are γs = ±2 × 
424.3 × 10−6 = ±848.6 × 10−6 . The maximum shear directions are 2θ = −45◦ , 2θ = 135◦ 

→ θ = −22.5◦ , θ = 67.5◦ The deformed shape of an element which originally was a 
parallelepiped with its faces parallel to these axes is shown as follows, 
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Figure 1: T-V rosette strain gauge 

i Problems M-8.3 [8 points] 
Consider the T-V rosette shown in Figure 1. The measured strains along the directions 
of the individual strain gauges are respectively e1 = 910µ, e2 = 990µ, e3 = 310µ, and 
e4 = 190µ. 

3.1 (2 points) Use the equations of transformation of strain components in 2D as many 
times as needed, to relate the measured strain components and those in the cartesian 
system E = (e1, e2) 

Solution: The measured data e1, e2, e3 and e4 correspond respectively to the values of 
the strains ε∗ for the angles θ1 = 0◦ , θ2 = 45◦ , θ3 = 90◦ and θ4 = −45◦ . We can use the11 

expression for transforming strain components to the axial ε∗ component in the new axis11 

repeatedly for each datum and its corresponding angle, which leads to the following system 
of equations: 

� � 
ε11 + ε22 ε11 − ε22

ε ∗ e1 = 11(θ1) = + cos(0) + ε12 sin(0)
2 2� � 

ε11 + ε22 ε11 − ε22
ε ∗ e2 = 11(θ2) = + cos(90) + ε12 sin(90)

2 2� � 
ε11 + ε22 ε11 − ε22

ε ∗ = = + cos(180) + ε12 sin(180)e3 11(θ3) 2 2� � 
ε11 + ε22 ε11 − ε22 

e4 = ε11 
∗ (θ4) = + cos(−90) + ε12 sin(−90),

2 2 

which reduces to 

e1 = ε11 

1 1 
e2 = ε11 + ε22 + ε12

2 2 
e3 = ε22 

1 1 
e4 = ε11 + ε22 − ε12,

2 2 
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3.2 (2 points) Can you determine the strain components ε11, ε22, ε12 from these equa-
tions? Do you have insufficient or redundant information? How can this be useful 
from the experimental standpoint? 

Solution: The system is clearly overdetermined as it has three unknowns and four equa-
tions. This overdetermination provides some means of reducing the uncertainty of the 
experimental measurements: instead of finding the exact solution to the system which 
most likely won’t exist unless the four values are mutually consistent, one can try to find 
the best approximation to the quantities of interest from the given data. 

It makes a lot of sense to have more measurements than the minimum required. For in-
stance, if one of the gauges is damaged, the extra measurements are very useful (and maybe 
essential) to determine the state of strain. If all the gauges are working, the redundant 
information can be used to compensate the experimental errors. 

3.3 (3 points) Use a least-squares approach to obtain the “best approximation” to the 
strain components ε11, ε22, ε12 in terms of the measured data. Hint: as it name 
indicates, the least squares method finds a solution of the overdetermined system 
by minimizing the sum of the square of the errors incurred in the satisfaction of 
each equation. 

Solution: The sum of the square of the errors incurred in the satisfaction of each equation 
reads: 

� � ��2 

S = (e1 − ε11)
2 + e2 − 

1 
ε11 +

1 
ε22 + ε12 + 

2 2 � � ��2 

(e3 − ε22)
2 + e4 − 

1 
ε11 +

1 
ε22 − ε12 . 

2 2 

Computing the derivatives of S with respect to ε11, ε22, ε12 and setting them to zero we 
obtain: 

−e2 − e4 − 2(e1 − ε11) + ε11 + ε22 = 0 

−e2 − e4 + ε11 − 2(e3 − ε22) + ε22 = 0� � � � 
1 1 1 1 −2 e2 − ε11 − ε12 − ε22 + 2 e4 − ε11 + ε12 − ε22 = 0,
2 2 2 2 

which simplifies to: 

3ε11 + ε22 = 2e1 + e2 + e4 

ε11 + 3ε22 = e2 + 2e3 + e4 

2ε12 = e2 − e4, 
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and results in: 

1 
ε11 = (3e1 + e2 − e3 − e4)

4 
1 
4 

ε12 = (e2 − e4). 
2 

⎤ ⎥⎥⎦ 

⎤ ⎥⎥⎦ 

−ε ( + 3 )+ += e e e e22 1 2 3 4 

1 

After replacing the measured values: 910 990 310 and 190e = µ e = µ e = µ e = µ we , , , ,1 2 3 4 

obtain:

More generally, the overdetermined of equations be written in matrix form system can as ⎤⎤ ⎥⎥⎦ 

If have over-determined Ax b where dim(A) M N dim( ) N 1,× ×systemwe an = = x =, , 
dim(b) M 1, and M N find the solution that minimizes the of the × >= we can x square�, 

T Tof the (least-squares approach) by solving the A A A b Notesystemnorm error x = . 
T Tthat in this system of equations A A is nonsingular matrix with dim(A A) N N×new a = . 

For problem the of equations becomes systemour ⎡ 
3 1 0 ε 2 1 0 1 ⎢11 ⎢⎦1 3 0 ε 0 1 2 1= ⎣ .22 

e4 

TBy inverting the matrix A A able calculate directly the solution of the problemtowe are� 

⎡⎣ 

⎤⎦ 

⎡ ⎢⎢⎣ 

⎡⎢⎢⎣ 

⎤⎦ 

ε11 ⎣ 

ε12 

1 0 0 e1⎡ 

1/2 1/2 1 e2 

⎡⎣ 

⎤ ⎥⎥⎦ ⎦ =ε22 . 
0 1 0 e3 

⎤ 

1/2 1/2 −1 e4 

⎡⎣ 

⎡⎣ 

⎤⎦ 

⎤ 

⎡ ⎢⎢⎣ 

⎡⎣ 

e1 

e2 

e30 0 1 ε12 0 2 0 −2 

�−1 
as x = AT A AT b, which for this specific case takes the form 

e1ε11 3 1 −1 1
1 e2ε22 ⎦ = −1 1 3 1 . 
4 e3ε12 0 2 0 −2 

e4 

ε11 = 900µ, ε22 = 300µ, ε12 = 400µ 

3.4 (1 point) Find the orientation of the principal strain directions, and the principal 
strains 
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Solution: The principal strains and strain directions are respectively given by the eigen-
values and the eigenvectors of this tensor, i.e. ε∗ = RT εR, where � � � � 

ε∗ 
11 0 1100µ 0 

ε ∗ = ≈ ,
0 ε22 

∗ 0 100µ 

and � � 

R ≈ 
−0.8944 
−0.4472 

0.4472 
−0.8944 

. 

The values of the strain components can be verified through the invariants of the strain 
tensor, i.e. I1 = I1 

∗ = 1200µ and I2 = I2 
∗ = 110000µ2 . 
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i Problems M-8.4 [3 points] 
(M.O. M11) 

The state of strain in a composite is determined by a rectangular strain gauge rosette 
attached to the surface, as shown in Figure 2. The three strain gauges (a, b, & c) 
are arranged at angles αa = 0o, αb = 45o , & αc = 90o . The gauges read �a = 20 × 
10−6, �b = 55 × 10−6, �c = −60 × 10−6 . The composite is a polymer matrix reinforced 
with unidirectional fibers that are aligned at 120o from horizontal. 

120
◦

Figure 2: Composite material with 3 strain gauges 

Determine the normal and shear strain components in the directions aligned and per-
pendicular to the fibers. 

Solution: 

There are two different ways to approach this problem. The first is to transform the strain such 
that e1 and e2 are horizontal and vertical, respectively. The second approach is to transform 
the stress directly to the orientation of the fibers. 

Method 1 
First, transform the strain so that e1 and e2 are aligned to the horizontal and vertical. Use the 
equations below. 

�11 + �22 �11 − �22
�a = + cos(2αa) + �12 sin(2αa)

2 2 
�11 + �22 �11 − �22

�b = + cos(2αb) + �12 sin(2αb)
2 2 

�11 + �22 �11 − �22
�c = + cos(2αc) + �12 sin(2αc)

2 2 

Simplifying the equations with the given angles. 

�a = �11 

�11 + �22
�b = + �12

2 
�c = �22 
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Solving the system of equations yields 

�11 = 20 × 10−6 

�22 = −60 × 10−6 

�12 = 75 × 10−6 

Next, transform the strain so that it is aligned with fiber using the equations 

�11 + �22 �11 − �22
�̃11 = + cos(2α1) + �12 sin(2α1)

2 2 
�11 + �22 �11 − �22

�̃22 = − cos(2α1) − �12 sin(2α1)
2 2 

�11 − �22
�̃12 = − sin(2α1) + �12 cos(2α1)

2 

where α1 = 120o . This results in 

˜ = −104.95 × 10−6�11 

�̃22 = 64.95 × 10−6 

�̃12 = −2.86 × 10−6 

To transform the stress to be aligned perpendicular to fibers change α1 to be 30o in the equations 
for strain transformation above. They will result in 

�̃11 = 64.95 × 10−6 

˜ = −104.95 × 10−6�22 

�̃12 = 2.86 × 10−6 

Method 2 
To compute the direct transformation start with the equations 

�̃11 + �̃22 �̃11 − �̃22
�a = + cos(2α1) + �̃12 sin(2α1)

2 2 
�̃11 + �̃22 �̃11 − �̃22

�b = + cos(2α2) + �̃12 sin(2α2)
2 2 

�̃11 + �̃22 �̃11 − �̃22
�c = + cos(2α3) + �̃12 sin(2α3)

2 2 

In the case of when the strain is aligned with the fibers the angles are 

α1 = −120o 

α2 = −75o 

α3 = −30o 
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The angles are measured from the orientation of ẽ1 (120
o in the first case and 30o in the second) 

to each gauge in the rosette. Plugging these angles into the equations above and solving the 
system of equations results in 

˜ = −104.95 × 10−6�11 

�̃22 = 64.95 × 10−6 

�̃12 = −2.86 × 10−6 

To compute the components of strain when aligned perpendicular to the fibers, the angles are 

α1 = −30o 

α2 = 15o 

α3 = 60o 

which result in 

�̃11 = 64.95 × 10−6 

�̃22 = −104.95 × 10−6 

�̃12 = 2.86 × 10−6 

Notice that both methods result in the same solution. Also, notice the two scenarios have a 
difference in orientation of 90o . When you go between the the two cases �̃11 and �̃22 switch and 
the the sign of �̃12 switches. 
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i Problems M-8.5 [3 points] 
(M.O. M11) 
The state of strain at a point in an aluminum component of the fuselage of an airplane 
is measured with a delta strain gauge rosette (See Figure 3, where each gauge is a side of 
the triangle) of three strain gauges a, b, c arranged at angles αa = 0, αb = 60, αc = 120◦ . 
The strain gauges read �a = 15 × 10−6, �b = 60 × 10−6, �c = 80 × 10−6 . 

Figure 3: Delta Rosette strain gauge 

Determine: 

5.1 (1 point) All the components of strain in cartesian axes e1, e2 respectively aligned 
with the horizontal and vertical direction 

Solution: 

Using the equations below we can solve for the state of strain where the Cartesian axes are 
align with the horizontal and vertical directions: 

�11 + �22 �11 − �22
�a = + cos(2αa) + �12 sin(2αa)

2 2 
�11 + �22 �11 − �22

�b = + cos(2αb) + �12 sin(2αb)
2 2 

�11 + �22 �11 − �22
�c = + cos(2αc) + �12 sin(2αc)

2 2 

Substituting in the values above 

15 × 10−6 = �11 

60 × 10−6 = .25�11 + .75�22 + .866�12 

80 × 10−6 = .25�11 + .75�22 − .866�12 

Solving the system of equations yields 

�11 = 15 × 10−6 

�22 = 88.3 × 10−6 

�12 = −11.55 × 10−6 

5.2 (1 point) The principal strains �I,II , their directions αI,II 

Page 15 



16.001, M&S - Fall 2020 Homework #8 

Solution: 

The equations below find the principal strains and the orientation of the element. 

2�12 
tan2αI,II = 

�1 − �2r 
�1 + �2 �1 − �2

�I,II = ± ( )2 + �12
2 

2 2 

substituting in the given parameters yields 

αI,II = 8.74o 

�12 = 0 

�I = 13.22 × 10−6 

�II = 90.1 × 10−6 

Alternatively, this problem could be completed using Mohr’s circle for strain. Mohr’s circle 
can be defined using the equations below(see Figure 4). s� �2

�11 − �22
R = + �2 = 38.426 × 10−6 

122 
�11 + �22

Center : C( , 0) = (51.65 × 10−6 , 0)
2 

Using Mohr’s circle, the principal stress can be found by 

�I , �II = Center ± R 

�12 = 0 

So the stresses are 

�I = 13.22 × 10−6 

�II = 90.1 × 10−6 

�12 = 0 

The orientation is calculated from the same equation as above, and thus it is the also the 
same. 

5.3 (1 point) The maximum shear strains γmax and their directions αs 

Solution: 
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The equations below find the maximum shear strain and the orientation of the element. 

�1 − �2 
tan2αs = − 

2�12r 
γmax �1 − �2 

= ± ( )2 + �2 
122 2 

�1 + �2
�avg = 

2 

Substituting the given parameters yield 

αs = −36.26o 

γmax = ±76.85 × 10−6 

�avg = 51.65 × 10−6 

Once again this problem could be completed using Mohr’s circle for strain (see Figure 5). 

�avg = Center 
γmax 

= ±R 
2 

plugging in the given values results in 

�avg = 51.65 × 10−6 

γmax 
= −38.43 × 10−6 

2 

which evaluate to 

�avg = 51.65 × 10−6 

γmax = −76.85 × 10−6 

The orientation angle from Mohr’s circle is calculated from the same equation above, so 
the orientation angle is the same. 
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R = 38.4× 10−6

γ

2

ǫ

(ǫII , 0) = (90.1× 10−6, 0)

(ǫI , 0) = (13.22× 10−6, 0)

2α1,II

(ǫ11, ǫ12) =
(

15× 10−6,−11.545× 10−6
)

Figure 4: Mohr’s Circle, principal state 

R = 38.4× 10−6

γ

2

ǫ

(ǫavg , ǫ12) = (51.65× 10−6,−38.42× 10−6)

(ǫavg ,−ǫ12) = (51.65× 10−6, 38.42× 10−6)

2αs

(ǫ11, ǫ12) =
(

15× 10−6,−11.545× 10−6
)

(ǫ22,−ǫ12) =
(

88.3× 10−6, 11.545× 10−6
)

C(ǫavg , 0) =
(

51.65× 10−6, 0
)

Figure 5: Mohr’s Circle at Maximum Shear State 

Page 18 



  
 

 
 
 

     
  

 
 
 

             
 

MIT OpenCourseWare 
https://ocw.mit.edu/ 

16.001 Unified Engineering: Materials and Structures 
Fall 2021 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/terms
https://ocw.mit.edu

