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16.001, M&S - Fall 2020 Homework #7

Problems M-7.1 [0 points]
(M.O. MS)

1.1 Suppose a body in equilibrium (assume no body forces in this problem) experiences
a stress field in which the normal stress in the e; direction is a function of x5, the
normal stress in the e, direction is a function of x;, and all out of plane stress
components are zero, so that the stress field has the following form:

011 = f($2)
022 = 9(301)

013 = 093 = 033 =0

Show that the in-plane shear stress o2 must be a constant value.

Solution: The equilibrium equations are (assuming no body forces and using
the fact that the stress tensor is symmetric):

60'11 80‘12 60'/
t

60'21 i 80'22 80'/23/4
o0x 8x2

00/ 30}// 80/%/
e s s

and simplify to:

8011 80’12

01, 0s =0
009 [Lop))

=0
81’1 * 8x2

Substituting for o7 and oas:
8f;{)/ 80'12 —0
ﬂl‘l 8x2

8021 3g %_
ﬁﬁz

So we find that

60'12 —0
al‘l
0o -0
8I2
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16.001, M&S - Fall 2020 Homework #7

where o195 = 091 by symmetry of the stress tensor. This is only possible if
019 = constant |.

1.2 Consider the following stress field for the body

011:$§+l‘2+1
o =]+ 11 +1

O13 =093 =033 =0

Give a possible value for 015 so that the body is in equilibrium. Justify your answer.

Solution: The stress field above is simply a specific example of the stress field
given in part (a), where 011 = f(z2) = 23+ 2o+ 1 and 099 = g(x1) = 23+ 71+ 1.
We know that for such a stress field, any ‘ 012 = constant ‘ is valid. One possible
(and the simplest) value for o9 is 0.

1.3 Now consider the following stress field (013 = 093 = 033 = 0)

2 2
o11 = X7 + 25
2 2
022 = I +ZE2

012 = —23715C2

Determine if the body is in equilibrium.

Solution: The equilibrium equations for this case are:

80’11 60’12

=0
0951 8x2
0o 002y

=0
8:[1 * 81‘2

Substituting our stress components i1, 012 and gas:

= (221) + (—221) =0

8:61 833'2
O(—2x179)  O(a3 + 73) B B
81‘1 + 81‘2 = ( 2132) + (2$2) =0

Since the equilibrium equations are satisfied, the body is in equilibrium.
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(O Problems M-7.2 [0 points]
Stress fields in static equilibrium.

Let’s consider a structure in equilibrium and free of body forces. Are the following stress
fields possible?

2

T
2
C1T1 + CoXo + C3T1 T2 —035 — C1T2
2.1 o = I‘Q
2
—03? — C1T9 C4X1 + C1Z2
3x1 + 5xy 4x1 — 319
2.2 o= :
4&31 — 31’2 25131 — 41’2
M .2 _ 2 _ 2 _
Ty T1T9 + Cx3 T122 + Th T1T3
2.3 o= —x1Ty + T3 3 — 9T
i —T1X3 —T9oX3 (1’1 —+ .1'2)1’3

Solution: To solve this problem we turn to the momentum equation

oo ji i f . 82ui
an Pl P ot?
As the structure is in equilibrium (steady state) and free of body forces, the

terms pa;t%" and pf; are null. Then, the equilibrium equations become

00 j;

P95 _ .
al’j

For a 2D stress field we have:

80'11 (90'12

% B oy 0a O
8.ij o

80'21 80'22

8951 * 81'2

For a 3D stress field we have:

oo oo 0oz
u 9012 0013

(93:1 8372 8273

8aji o (90'21 i 80'22 30'23

= 2
8xj (‘31:1 81’2 (%3 ( )

Oos; 0039 +5033
| Oz 0y O3 |

1. For the first stress field we obtained:

al’j C1 &1

(90']'1' . C1 + C3To + —C3T2 — C1 :| . |: 0 :|

Page 4



16.001, M&S - Fall 2020 Homework #7

This stress field does not satisfy the equilibrium equation.
2. For the second stress field we obtained:

80' ji 3—3 0

axj_{4—4}_[o] )
This stress field does satisfy the equilibrium equation.
3. For the third stress field we obtained:

a 21’1—21‘2—1’1+2$2—£L‘1 0

Uji

—a — —T9 + 2.272 — T2 - 0 (5)
s —T3 — T3+ X1+ T2 —2.%’3 + 1+ T2

This stress field does not satisfy the equilibrium equation
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(O Problems M-7.3 [0 points]
For certain problems whose geometry features a rotational symmetry about one of its
axes, Cartesian coordinates may not be the most convenient choice. For such prob-
lems, cylindrical coordinates may be more convenient for describing the involved field
quantities.

The objective of this problem is to specialize the “stress equilibrium” equations in vector
form

V.o+f =0, (6)

which were introduced in class in terms of Cartesian coordinates as

80ij

oz, + fi =0, (7)

to cylindrical coordinates.

The end result we want to find for the full 3D case is:

aarr 1 aar@ aarz Orr — 099 o

or a0 ' oz =0 @
80T9 1 80'99 8092 20}9 .

or v o0 | 02 Tle=0 (©)
agrz 1 8092 ao_zz Orz .

or ' r 00 0z r /=0 (10)

We start by looking at the representation of a vector r in terms of both the Cartesian
coordinates x; and the cylindrical coordinates r, 6, z, Figure 1.

3.1 Express the Cartesian coordinates z1, zo, 3 in terms of the cylindrical coordinates
r, 0, z, and vice versa.

Solution:
_ /.2 2
oo COS(Q) (11) r = ./El -+ IQ (]-4)
ro = rsin(d)  (12) 0 = arctan <ﬁ> (15)
T
Zz = "L‘3 (16)

3.2 Express the orthonormal basis vectors e, e,, es pertaining to the Cartesian coor-
dinate system in terms of the orthonormal basis vectors e,, ey, e, pertaining to the
cylindrical coordinate system (and any coordinates you may need).
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\
?

Figure 1: Position vector r represented in terms of the Cartesian coordinates x; (black) and
the cylindrical coordinates r, 6, z (red). The respective unit basis vectors pertaining to the
position r are also displayed.

Solution:

Basis vectors of the Cartesian coordinate system in terms of the basis vectors
of the cylindrical coordinate system:

e; = e, cos(f) — epsin(f) (17)
ey = e, sin(f) + egcos(h) (18)
e = e, (19)

3.3 Using your results from the previous parts, show that the del operator V which is
given in Cartesian coordinates as

V:elg_i)l+82§_a(;)2+e3§_:g (20)

can be expressed in cylindrical coordinates as

2, 120, 0

V:erajtegrae eZ@z' (21)
Suggested approach:
1. Insert ey, e, e3 from Part (b) into Eq. (20).
2. Use the chain rule
0
90 _ 90 0r [ 0096 9092 iy 9 (22)

or;  Or Ox; | 00 0x; 0z Ox;
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together with your results from Part (a) to replace 9()/dz1,
in Eq. (20).

0()/ 0z, 0()/0xs

Solution: Following the suggested approach, we can insert e;, ey, e3 from
Part (b) into Eq. (20):
20

V = (e, cos(f) — eysin(6)) gﬁ + (e, sin(f) + eq cos(h)) o0 +e, —

o 0xy Ox3
Next, we insert the chain rule stated in Eq. (22):
) _ o) or 00 09  9() 0z
VvV = (e, cos(f) — egsin(h)) <6r or, | 00 Oz, + 0z 0x;
' o) or 00 96 9() 0z
s ety (202, 202, 202
00 or 00 90 | 90 9z
*\Oorors 0600x; 0z Oxs

In order to simplify the above expression further, we need to evaluate the partial
derivatives occurring in it:

or _ o1 = cos(0) or o = sin(0) o _ 0
014 Va2 + 13 0wy Va2 + 13 0x3
9  —xy  sin(f) 06 vy cos(f) a0 0
Or, 2% +a3 r Ory  ai4a3 7 Ors
0z 0z 0z
o, " oy " e
Inserting the partial derivatives yields
_ - 9() o001
V = (e,.cos(f) —epsin(f)) ((% cos() — 50 sin(6)
: a() . ()1
+ (e, sin(#) + eg cos()) (E n(f) + 20 cos(6)
90)
+ ez%
which can be rearranged as
_ 90 . 00 2 90 1 ~ 001
V= e ( o C os?(6) + 3, Sin (0) + 0 sin(f) cos(0) 20 sin () cos(0)
001 901 . 90 . 90 .
+ ey (09 cos”(0) + 50 7 5 0) + o sin (@) cos(0) o sin (@) cos(0)
90
e
_ 90) 190 9()
= e, 8_ + €y — % + e, a
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3.4 Express the stress tensor o in terms of the unit basis vectors e,, ey, e, and its
respective stress components.

Solution:

o = Orr€r Qe +0pe,Deg+ 0,6 Ke,
+Opr€p Qe+ 0ppey D€y + 0p.€9 e,
+Uzrez®er+020ez®ee+azzez®ez (23>

3.5 Express the divergence of the stress tensor V - o in terms of the unit basis vec-
tors e,, €y, e, and the respective stress components. Do this by combining Eq. (21)
and your representation of the stress tensor from the previous part. Recall that the
stress tensor is symmetric and that

e -(e;Re,) = (e;-ej)e, = b€, for i,j,ke{rb z}. (24)
Solution:
The formal application of the del operator in cylindrical coordinates as stated
in Eq. (21) yields:
_ (. 20 1.0() 9()
V~a—(era+eg;%+eza e
- (e @e) ep o (oye, @e) te. o (o0, e
- € or Orr € € €9 Y Orr € € € Oz Orr € €
Fer oy, Do) tepe o (ge, @) e (ae, @)
€r or Org € €9 €9 r o0 Org € €9 €, Oz Org € €9
+e 6( e, ®e,)+e 18( e ®e,) +e 8( e ®e,)
- —_— O' - —_—— 0' - —_— O’
T alr‘ TZ T z 9 r 80 TZ T z z az TZ T z
+e (0gregRe.)+e 18( egRe.)+e a( e ®e.)
- —_— 0' - —_—— o' o —_— o'
r or or €0 r 0 r 00 or €0 r z O or €0 r
+e (0gpeg R ey) +e 18( egRey) +e a( ey X ep)
- —_—— O' - —_—— 0’ - —_— 0'
r gy (060 €0 O € Ay AR = g, \Tee o e
+e a( egg®Re,)+e 18( eg®Re,)+e a( e ®e,)
r or O0pz €9 z 0 r 00 O0pz €9 z z O 09~ €9 z
+e (0.re.,®e.)+e 18( e.®e)+e 8( e ®e;)
T a/r. O-Z'I" z T 9 r ae O-Z'I" z T z az O—ZT‘ z T
+e -—(0ge.®ey) +e 12( e. Qe +e g( e, ®ey)
r or 020 €z 0 0 r 00 020 €z 0 z O 020 €, 0
te D (e @e) ter s D (0ne®e) te o (e ®e,)
e'f’ ar UZZ eZ eZ e9 r 80 UZZ eZ eZ eZ az JZZ eZ eZ
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Before further evaluating the above expression, an important difference between
Cartesian and cylindrical coordinates shall be pointed out: While the directions
of the basis vectors are constant in a Cartesian coordinate system, the directions
of the basis vectors in a cylindrical coordinate system depend on (the coordinates
of) the considered point. This can be seen by expressing the basis vectors of the
cylindrical coordinate system in terms of the (spatially constant) basis vectors e;
of a Cartesian coordinate system:

e, = ejcos(f) + exsin(f) (25)
eg = —eysin(f) + ey cos(h) (26)
e. = e (27)

Obviously, both e, and ey depend on . Consequently, their respective spatial
derivatives are non-zero

0 0 : :
50 (e,) = 50 (cos(f)e; + sin(f)ey) = —sin(f)e; + cos(f)es = ey (28)
% (eg) = % (—sin(f)e; + cos(f)ez) = —cos(f)e; — sin(f)e; = —e,  (29)

while all other spatial derivatives of the basis vectors of a cylindrical coordinate
system are the zero vector:
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v

o

+e7"

_I_er'

e,

+er'

+e7"

+e7"

+er'

+e7"

agrr

or

do,
" (e, ® eg) + e

(e, ®e.) +eq

or

Oogg
B (eg @ ep) + €y

8092

or

00 ,,

or
8029

(eg®@e,) + e

(ez X er) + €y

(. ®ep) + e

9 -
(eg) Ke, +e D — (er)

[0 0
90 (eg) ®ep+ ey @ — (ep)

Taking this insight into account, the application of the product rule yields:

10o,,

00
1 80'7«9
r 00
100,

r 00
1 aagr

00
100
T op (o @en) tes
1(90’92

r 00
100,

r 00
1 aaz@

00
10o..
r Oz

(er®er> +ez :

(e, ®eg) +e, -

(eT®ez) +e;-

(eG ®e7‘) +ez .

(69 ®ez) +ez :

(ez®er) +ez :

(ez ®89) +ez :

(ez®ez) +ez :

0
20 (eq)
—— -

00
N—— -
=eg

00

=—e,

(30)
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Eq. (30) can be simplified using the hint given in Eq. (24):

v 0o,y . 00,9 . 00, .
O = T z
or or or
1 80"% 1 8099 1 8agz
e T e T e
i aazr + 8029 + aO-zz
e, e e,
0z 0z 0 0z
Orp Org rz
+ €, + €9 + €,
r T
_I_ U@T’ ee J— % er
T T
o aarr + 1 8091" aazr Orr
N or r 00 0z r
Jo,g 10099 Oog  0Orp
* ( or * r 00 0z r
+ ao_rz + 1 8002 ao_zz Orz
or r 00 0z r

Finally, exploiting the symmetry of the stress tensor o, one finds:

o ao—rr 1 aJTG agrz Orr — 000
Vo= (8T+r 00 8z+ r )er
80r9 1 80',99 8092 20}9
* ( or - r 80 0z - r )eg
+ ao_rz + laUQZ + aO-ZZ + Orz
aor r 00 0z r )

(31)

(32)

3.6 Express the stress equilibrium in Eq. (6) in terms of cylindrical coordinates and the

associated unit basis vectors.

Solution:
- aarr 1 aar@ ao_rz Orr — 009
Voort= (5’7‘ r 00 0z r > "
80}9 1 80'99 adgz 20}9
* ( ar ' r 96 0z * r ) 0
+ 8Grz l 80‘93 ao-zz Orz e
or r 00 0z r ¢
+ frer + f960+fzez
—0 (33)
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Problems M-7.4 [9 points]
(M.O. MS)

4.1 (3 points) Consider a material element under plane stress, so that all out of plane
stress components 013 = 093 = 033 = 0. Body forces f; and f, act on the material
element as well. Derive the equilibrium equations in the case of plane stress.

Solution: We derive the equations of equilibrium corresponding to plane stress by applying
force equilibrium in the 1 and 2 directions. Note that each stress must be multiplied by a
corresponding area to obtain force, which in this 2D case is essentially a length.

e Force Equilibrium in 1-direction

ZE:O:

(%+ 80-11 dl‘1> d.TQ —/I{dl’g
81'1
0
+ (%-1— a(;?ldM) dry — gordxy + fi
2

80'11 80'21

8:151 8.’13'2

+/1=0

e Force Equilibrium in 2-direction

Y B=0=

80’22

(%‘i‘ 8:(,’2 dl'g) dxq —/zfdl’l

+ <%+ 8801-}2 d$1> dxs —%dJTQ + f2
1

0012 0099

(‘9901 81‘2

+f2=0

Thus, the two equations of equilibrium corresponding to the case of plane stress are:

8011 80’21

5, + _8x2 +fhH= (34)
80’12 80'22 .
81’1 8x2 + f2 n (35>
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4.2 (3 points) Suppose a body in equilibrium (assume no body forces in this problem)
experiences a stress field in which the normal stress in the e; direction is a function
of x5, the normal stress in the e, direction is a function of x1, and all out of plane
stress components are zero, so that the stress field has the following form:

011 = f($2)
022 :9(131)
013 = 093 = 033 =0

Show that the in-plane shear stress o1 must be a constant value.

Solution: The equilibrium equations are (assuming no body forces and using the fact that
the stress tensor is symmetric):

80'11 i 80'12 i (90'/1/{(: 0
(9&:1 8x2 /3/1‘3

6021 80’22 80/23/4
0y 81’2

80/ 80/3/ 80;«{(
ey s s

and simplify to:

80'11 80'12

81’1 8x2

80'21 80'22

0, 019

=0

=0

Substituting for o1; and ogs:

e}

0
8f(%f+ doy
ﬁxl B

65132

0
(90’21 i 85](%: 0

0, T

So we find that

80'12

8x1

80'21

8962 N

where 019 = 091 by symmetry of the stress tensor. This is only possible if | 615 = constant |.
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4.3 (1 point) Consider the following stress field for the body

o1 = x5+ 19 + 1
022:Q3%+LE1+1

013 = 093 = 033 =0

Give a possible value for 15 so that the body is in equilibrium. Justify your answer.

Solution: The stress field above is simply a specific example of the stress field given in
part (a), where o1; = f(z2) = 23 4+ 22 + 1 and 09 = g(z;) = 2 + 21 + 1. We know that

for such a stress field, any ’012 = constant | is valid. One possible (and the simplest) value
for 015 is 0.

4.4 (2 points) Now consider the following stress field (013 = 093 = 033 = 0)

2 2
011 = I§ +Q?2
2 2
0992 :l’1+$2

012 = —2I1[E2

Determine if there can be any body forces for the body to be in equilibrium.

Solution: The equilibrium equations for this case are:

8011 80'12

0, 019 =0
009 009y .
81’1 * 8x2 =0

Substituting our stress components o1, 012 and o9s:

d(x? + 23) N 0(—2x1x2)

= (2131) -+ (-2%1) =0

3x1 8x2
O(—2xy25) | O(a] +13) _
89;1 —f- agjz = ( 21’2) + (21’2) = 0

Since the equilibrium equations are satisfied, the body is in equilibrium.
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(O Problems M-7.5 [7 points]
It is shown in higher-level classes on elasticity theory that the stress field in a semi-infinite
plate of thickness d occupying the region (z; > 0; —0o < x9 < +00, 0 < 23 < d) with
a concentrated normal edge load of magnitude P = pd, as shown below, has Cartesian
scalar components o3; = 033 = 033 = 0 and

2p cos® 0
011 — —pT (36)
2psin? 6 cos @
029 = _pT (37)
2p sin f cos? 6
012 = _pT (38)

where r and 6 are the cylindrical coordinates. Note that in this case, the cartesian
components in the given basis e; are provided and that they are expressed as a function
of the cylindrical coordinates r, 6.

P=pd
€3

€9 d

€9

— 1 |~

€1

5.1 (2 points) Determine the components of stress in the cylindrical coordinate system,
ie. 0.(r,0), oga(r,0), ore(r,0) (Hint: use the 2D stress transformation equations).
Interpret your result with the aid of a sketch of a cylindrical surface centered at the
origin, and drawing a few material elements on the surface aligned with the radial
and hoop directions together with the stress components acting on the planes with
those normals. What can you say in terms of: principal stresses and directions, and

shear stresses acting on any cylindrical surface centered at the point of application
of the load?
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Solution: Using the transformation equation,

O = 011 COS 0 + 099 8in2 0 + 2015 cos O sin ) = —

2p cos b

wr

Og9 = 011 SIN° O 4 099 cOS% O — 2015 cos A sinf = 0

0rg = (029 — 011) sinf cos O + a15(cos® § — sin® §) = 0

The state of stresses reduces to one single stress component in the radial direction: o,.,.
The principal direction is e, and the principal stress is 0,.. The shear stresses acting on
any cylindrical surface centered at the point of application of the load are 0.

(39)

(40)

(41)

5.2 (2 points) Show that the body is in equilibrium (Hint: use the differential equations
of stress equilibrium in cylindrical coordinates derived in problem 3).

Solution: Using the results from M7.1(f), the equilibrium equation in cylindrical system

reads,
8UTT 1 80_7"0 aarz Orr — 090
A\ f = - -
7 < or N r 00 0z N r ©
80}9 1 80‘99 8O'QZ 20}9
i ( or N r 80 * 0z N r )<
n 00, n 100y, n 00, n Orz\ o
or r 00 0z r ?
+ fTeT + f969+fzez
=0
Substitute o,, = 72’;—3089, 099 = 0 and 0,9 = 0, we have
) —2p cos O —2pcos
V- o + f = ( ( r ) + r e,
or r

2pcosf  2pcosf

=
=0

e,

mr? mr

(42)
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5.3 (1 point) Derive an expression for the traction vector acting at points on the semi-
cylindrical surface r = a.

Solution: The traction t is

2p cos 6

t=0-n= (Urre'r®er+00089®60+0r09r®60+09r99®er>'er = Opr€r+0¢r€9 = — €

wr

(45)
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5.4 (2 points) Show that the traction distribution on the semicylindrical surface r = a
is in equilibrium with the edge load, for arbitrary a. To do this, you will need
to calculate the resultant forces and moments due to the traction distribution by
integrating over the surface.

Solution: The resultant forces (in z; and zy-directions) due to the traction at r = a are

2 22 2 2pcosf
ﬂ:/tewm:/-ﬁm%@ﬁmwz/—mmsm@mmkm(@

wr wr

us
2

Wl

us
2

and

wr

2 > 2pcosh
Bz/hn%mwz/”—pwsawmw:o (47)

jus
2

[ME]

Thus the traction is in equilibrium with the applied load P = pd.
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