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Breguet Range Equation 

Instructor: Raúl Radovitzky 
Teaching Assistants: Grégoire Chomette, Michelle Xu 

1 Estimation of powered aircraft maximum range: Breguet 
Range Equation 

1.1 Learning Objectives 

At the end of this lecture, you will be able to answer the following questions: 

• How far can an airplane fly? 

• How do the disciplines of structures & materials, aerodynamics and propulsion jointly 
set the performance of aircraft, and what are the important performance parameters? 

• Estimate the performance of aircraft using empirical data and thus begin to develop in-
tuition regarding important aerodynamic, structural and propulsion system performance 
parameters 

1.2 Some operational data 
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1.3 Historical note about the “Breguet” Range Equation 

• According to the book Introduction to Flight, John Anderson, 2nd ed., McGraw-Hill, 
1985, p.334), the earliest derivation of the range equation is found in a paper by J.G. 
Coÿn, “A Study of Airplane Ranges and Useful Loads,” NACA Report No. 69, 1919, 
with no reference to Breguet. It concludes that the reason for the association of the 
Range Equation with the name Breguet “...is historically obscure.” 

1.4 Derivation of the Breguet Range Equation 

An excellent estimate of the range (maximum distance) that an aircraft can fly (under some 
important assumptions) is provided by the Breguet Range Equation. 

The main consideration is to try and establish a relation between distance traveled R 
(m) and the remaining amount or mass of fuel Wf (N). The equation is obtained by simple 
considerations of mass, momentum and energy balance. 

For simplicity, we will base our estimate assuming level flight (i.e. we ignore take-o˙, 
climb, descent and landing). 

• Equilibrium or momentum conservation: During level flight, the aircraft travels at a 
constant ground speed V (m s−1) and altitude, see figure: 
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Under these conditions, the propulsive force or thrust T (N) equals the aerodynamic 
drag force (D), and the aerodynamic lift force L (N) equals the total weight W (N): 

T = D , L = W , (N) (1) 

You will study in Fluids in the spring that the drag and lift are related and that in 
level flight, the ratio of the two can be considered constant. This allows us to relate 
the vertical and horizontal equilibrium equations, and thus the thrust and the weight 
as follows: 

L L 
W = L = D = T, W = 

L
T , (N) (2)

D D D 

Note that L/D is a measure of the aerodynamic eÿciency of the aircraft. 

• Mass balance: At any point during flight, the total weight of the aircraft (W ) is the 
addition of the weight of the structure (Ws), the weight of the payload (Wp), and the 
weight of the fuel (Wf ): 

W = Ws + Wp + Wf , (N) (3) 

The maximum total weight of the aircraft when the fuel tanks are full and under full 
payload is typically referred to with the acronym MTOW, or maximum take-o˙ weight. 
Also, during flight, the total weight W changes as the fuel mass is expended. So the 
total aircraft weight as well as the fuel weight can be thought of as functions of time t 
or also distance traveled R. The change can be written mathematically as follows: 

dW dWf 
= = −ṁ f g , (N s−1) (4)

dt dt 

where ṁ f (kg s−1) is the fluid mass flow rate assumed constant in level flight, and 
g ∼ 9.81 m s−2 is the acceleration of gravity on earth (also assumed constant). 

• Energy balance: The main consideration here is that the fuel energy is expended in 
producing the thrust which is necessary to counterbalance the drag. The propulsive 
power Pp is: 

−1 −1Pp = T × V , (N m s = J s = Watt) (5) 

The power is provided by the combustion of the fuel, which has an amount of energy 
per unit mass hf (J kg−1), and could in principle provide a fuel power Pf : 

Pf = ṁ f × hf , (�kg s
−1 kg−�1 = Watt) (6)� × J�� 

However, and as you will study in detail in Thermodynamics and Propulsion, a number 
of losses occur in the process of converting the chemical energy available in the fuel 
to the final propulsive power. We refer to the fraction of the fuel power e˙ectively 
contributing to propulsive power as the total eÿciency η0: 

Pp
η0 = (7)

Pf 
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and our energy balance principle can be written as: 

Pp = η0Pf , or TV = η0ṁ f hf , (Watt) (8) 

Having discussed the important governing principles, we now seek to combine the resulting 
equations to achieve the desired goal. We start by going back to the initial idea that we are 
seeking to find a relation between the aircraft weight and the distance traveled. It is clear 
that by the time the weight of the fuel has vanished, we have reached the maximum range 
Rmaxthe aircraft can travel under power. At that point, Wf = 0, W (Rmax) = W0 = Ws + Wp, 
i.e. the total weight is the weight of the aircraft with zero fuel W0 which is the sum of the 
structural and payload weight, also known as the operating empty weight (OEW). We note 
that mass conservation Equation (4) gives us information on how the weight W changes over 
time t, not distance traveled R. However, distance traveled and time are related by: dR = V ,

dt 
and we can use the chain rule to write: 

dW dW dR dW 
= = V = −ṁ f g (9)

dt dR dt dR | {z } 
from(4) 

This expression can be combined with energy balance Equation (8), as follows: 

ṁ f T
from (8): = (10)

V η0hf 

dW ṁ ffrom (9): = −g (11)
dR V 

combining: 
dW 

= −g T 
(12)

dR η0hf 

The final step is to now recognize that we haven’t used our equilibrum (or momentum balance) 
Equation (2), which gives: T = W . Combining this with Equation (12), we get:

(D
L ) 

dW gW 
dR 

= − 
η0hf D

L (13) 

This equation has the form: 

g
W 0(R) = aW (R), where the constant coeÿcient : a = − 

L (14)
η0hf D 

It constitutes a first-order ordinary di˙erential equation with constant coeÿcients and governs 
the evolution of the weight of the aircraft W as a function of distance traveled R. It can be 
easily integrated by noting that: 

1 
(ln f(x))0 = f 0(x) (15)

f(x) 

6 



and therefore Equation (14) can be written as: 

W 0(R) 0 = (ln W (R)) = a (16)
W (R) 

integrating: ln W (R) = aR + C (17) 

Now comes the important step of applying the initial condition, or known point in the solution 
W (R). What we know, is that at the beginning of the flight (distance traveled R = 0), the 
weight of the aircraft is the total weight with full fuel tanks: 

W (R = 0) = Winit = W0 + Wfuel (18) 

Evaluating Equation (17) at the known solution point: 

ln W (R = 0) = a0 + C, → C = ln Winit (19) 

Replacing in Equation (17): � � 

ln W (R) − ln Winit = aR, 
1 → R(W ) = ln 
a 

W 
Winit 

(20) 

Replacing the value of a from Equation (14): 

L � � 
η0hf D W 

R(W ) = − ln (21) 
g Winit� � 

hf L Winit
R(W ) = η0 ln (22) 

g D W 

We have thus established the sought relation R(W ) of the distance traveled in level flight 
R as a function of the evolving weight of the aircraft W . This relation can be inverted to 
obtain the weight as a function of distance. 

A number of remarks and observations are in order in the interpretation of Equation (22): 

• the factor h
g 
f should define the dimension of the right hand side as all other factors are 

non-dimensional. Let’s check this using SI units: hf has units of energy per unit mass, 
or in SI: J kg−1 = �kg� m s−2m�kg�−

�1 = m2s−2 , g has units of length per time squared, or 
s−�2in SI: m s−2 . Then, the ratio hf /g in SI has units: m 

�m 

2�
�
� = m. We conclude that this s−�2 

factor has dimensions of length and gives the dimension of the right hand side. 

Physically, this factor represents the eÿciency of the fuel in terms of the energy density 
per unit mass. Clearly, a fuel with a higher value of hf would increase the range, ceteris 
paribus. Typical values of hf for jet fuel is around 40MJkg−1 . The equation also tells 
us that gravity a˙ects the range in an inversely-proportional manner. 
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• The factor η0 has already been discussed and represents the propulsive eÿciency of the 
engine. Typical values for modern propulsion systems are around 0.2 − 0.4. 

• the factor 
D
L is non-dimensional and represents the aerodynamic eÿciency of the aircraft 

design. Typical values of L in modern aircraft are around 15 − 20.
D 

• the factor inside the logarithm Winit 
W represents the ratio of the sum of the structural 

Ws, payload Wp, and initial fuel Wf weights to the current total weight. 

The maximum range Rmax for a given aircraft is obtained from Equation (22) when 
the initial weight Winit = MTOW, and all the fuel weight has been expended Wf = 0, 
in which case W = W0 = OEW 

� � 
hf L MTOW 

Rmax = η0 ln (23)
g D OEW 

Clearly, MTOW plays the role of a structural eÿciency of the aircraft design, and calls 
OEW 

for lighter and lighter aircraft where as much as possible of the weight is devoted to the 
fuel. Typical values of MTOW ∼ 2.

OEW 

THE BREGUET RANGE EQUATION

Speed of sound

Thrust Specific Fuel Consumption
TSFC = mass flow rate of fuel per unit thrust

Mach number 
M = V/a

Or equivalently,

Range = a
g
M L D
TSFC

 ln Winit

Wfinal

!

"
#

$

%
&

Warning: Watch units of TSFC which are typically kg/s/N or lbm/hr/lbf
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FUEL ENERGY/UNIT MASS

(from The Simple Science of Flight, by H. Tennekes)

1.5 More practical and operational data 

© MIT Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 

WEIGHT & GEOMETRY

(from The Simple Science of Flight, by H. Tennekes)

€

F = L /D

© MIT Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 
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AERODYNAMIC EFFICIENCY TRENDS

Babikian, Raffi, The Historical Fuel Efficiency Characteristics of Regional Aircraft From Technological, 
Operational, and Cost Perspectives, SM Thesis, Massachusetts Institute of Technology, June 2001

OVERALL PROPULSION SYSTEM EFFICIENCY

(After Koff, 1991)

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 

Source: NASA/public domain 
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ENGINE EFFICIENCY TRENDS
Turboprops, Regional Jets, Large Aircraft

Babikian, Raffi, The Historical Fuel Efficiency Characteristics of Regional Aircraft From Technological, 
Operational, and Cost Perspectives, SM Thesis, Massachusetts Institute of Technology, June 2001

STRUCTURAL EFFICIENCY TRENDS
Turboprops, Regional Jets, Large Aircraft

Babikian, Raffi, The Historical Fuel Efficiency Characteristics of Regional Aircraft From Technological, 
Operational, and Cost Perspectives, SM Thesis, Massachusetts Institute of Technology, June 2001

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 
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