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Transformation of stress components |

Consider a different system of cartesian coordinates &;. We can express our
tensor in either one:

O =0uek®e = Gmnem ® €, (1)
We would like to relate the stress components in the two systems. To this end,
we take the scalar product of (1) with & and &;:

éi O é_, = O'kl(éi . ek) (el . éj) = a-mn (él . ém) (én . é_/) = Jmn(sim(snj = 0Ojj

or

Gij = ow(& -ex) (e - &) (2)

The factors in parenthesis are the cosine directors of the angles between the
original and primed coordinate axes: (é,- . ek) = cos (<(&;ex)



Transformation of stress components Il

Transformation of stress components in two dimensional states of stress:
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Expand, use symmetry of stress tensor oj; = oji:



Transformation of stress components |lI

ou =on (el '81) (el‘é1)+0'12 (el‘él) (ez : él) +ox (92'é1) (el'é1)+0'22 (ez'el) (e2~é1
N—— N——

cos o sin

2 . -2
=011¢05 @+ 20psinacosa + oxpsin®a (3)

012 = o1 (el'él) (el : éz) +012 (el'él) (ez : é2) +021 (ez'él) (el'é2)+022 (62'81) (ez'éz
\w_/ ~——
—Sin & COos &

. 2 .2 .
= —011SIN A COS & + 012 COS” @ — 021 SIN” (@ + 022 SIN @ COS ¢

= (022 — o11) sinavcosa + (cos’ a —sin” a)or2  (4)

G2 = on (el'é2) (el'é2)+012 (el'éz) (e2~e2)+021 (92"52) (91'é2)+022 (ez'éz) (ez'éz)

.2 . 2
= ou1sin“a — 2o sinacos o + o cos” a (5)



Transformation of stress components IV

Further simplify using trigonometric relations:
sin2a = 2sinacosa, cos2a = cos® a — sin’ a (6)

sin®a = %(1 —cos2a), cos®a = 3(1+ cos2a) @)

Stress transformation equations in 2D:
fu=22 ;"22 + P27 cos2a + onsin 20 (8)
G = 2 ;—U” - ; T2 0520 — o1z sin 20 (9)
G12 = —% sin 2a + 01> cos 2a (10)




Principal stresses and directions |

Given the components of the stress tensor in a given coordinate system, the
determination of the maximum normal and shear stresses is critical for the
design of structures. The normal and shear stress components on a plane with
normal n are given by:

ty = t(n) ‘n
= OkiNkN;
ts =/ [t™]2 — 5

It is obvious from these equations that the normal component achieves its
maximum ty = ||t™ || when the shear components are zero. In this case:

t" =n.o=Xn=Ain-I
n-(c—X)=0

where | = §je; ® e; is the 2nd order identity tensor. In components:



Principal stresses and directions Il

nk(oki — Aoki) =0 (11)

which means that the principal stresses are obtained by solving the previous
eigenvalue problem, the principal directions are the eigenvectors of the problem.
The eigenvalues \ are obtained by noticing that the last identity can be satisfied
for non-trivial n only if the factor is singular, i.e., if its determinant vanishes:

o011 — A 012 013
|O’ij*A5;j| = 021 0'22—)\ g23 :0
031 032 033 — A

which leads to the characteristic equation:

NN —bA+ k=0



Principal stresses and directions |lI

where:
h =tr[o]
=0jj = 011 + 022 + 033 (12)

b = trloY]det]o] = %[tr[o]z ~tro?]] =

1
=5 (ciioyj — 0jj0ji) = 011022 + 022033 + 033011 — (012021 + 023032 + 031013)
(13)
I = det[o] = €jkoinoj20k3
_ 2 2 2
= 011022033 + 2012023031 — 012033 — 023011 — 013022 (14)



Principal stresses and directions |V

are called the stress invariants because they do not depend on the coordinate
system of choice.

@ The principal stresses are the eigenvalues of the matrix of stress tensor
components given on any basis.

@ The principal directions are the corresponding eigenvectors

@ Since o is symmetric, its eigenvalues are real and its eigenvectors are
orthogonal

In the 2D case, we have a less mathematical and more intuitive approach to
find principal stresses and directions:
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Principal stresses and directions V

Principal stresses and directions in 2D (plane stress) states: We seek to
find direction(s) in which normal stresses are maximized. From (2):

doi(a o1 — 02 . 20
ﬁ =0= —Zu sin 2ap + 2012 cos 2ap, — | tan2ap, = oz
da 7 011 — 022

Interestingly, we find that the condition of maximizing the normal stress
coincides with the condition of a zero shear stress according to (10).

This equation has two roots for 2, which are 180° apart (see figure), which
means that ap1 and app are 90° apart.
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Principal stresses and directions VI
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In
order to obtain the actual value(s) of the maximum stress component o011, we

must replace the values of a;12 in (2). The sine and cosine of the angles can
be obtained from the triangles of the figure where 215722 1, are assumed
both positive or both negative. The diagonals of these triangles have a size

R= () o
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Principal stresses and directions VII

If we substitute ap1 or a2 in (2), we obtain:

o 011+ 02 | 011 — 02 011 — 02 012
o1 = d11(ap1) = 5 + 5 SR +012?
o11 + o2

2
. 011+ 02 01— 02011 — 02 o1
o =Gnlap) = =5 - = 2R "®R
_ou+oxn R

2

5 o1 — 022 012+U ou o2 _

= — (g =
2 R 2R
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Principal stresses and directions VIII

In summary we have:

Given stress components 011,012,022 in a cartesian basis. The principal stresses
and directions are given by:

’ 2 2
20
tan2a, = 2
011 — 022
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Maximum in-plane shear stress |

The maximum shear stress 0; = 75 and the orientation of the planes where

they take place as can be determined by finding the angle for which the
derivative of the shear stress (10) vanishes:

doiz(a 011 — O . o11 — O
712( ) =0= —Zin 2 cos 2as — 2012 sin 2, — | tan2ais = _n oz
da Z 20’12
We note that tan2as = fm, i.e., the angle 2a; is at 90° of the angle 2a,,

that is: the planes for maximum shear are oriented at £45° from the
planes corresponding to the principal directions of stress Using either one of
the two roots of the equation above we can obtain the value of os. A
convenient way of doing this is to use directly the values of cos2as, sin 2ass
which can be graphically obtained from the figure:
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Maximum in-plane shear stress Il

L} 2a
: _ _o11—02 st : _ o11-092
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16



Maximum in-plane shear stress |1l

Substituting in (2)-(10), we obtain:

F11(as) = 011-;022 ngﬂzzt%z_’_glz(_ 0112—R022)
_ ou+ox
2
. _ 011+ 02 01— 02012 011 — 022
alan) = =5 — -5 g ~oul-—Hg )
o111t o»
2
~ 011 — 022 o1 — 022 o12
os = F1a(as1) = — 5 (- R ) T =

1 _
ﬁ[(Uu . 022)2+U%2] - R
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Maximum in-plane shear stress IV

In summary we have:

Given stress components o011, 012, 022 in a cartesian basis. The maximum shear
stresses and directions are given by:

oo — \/(011 ; 022)2 o2,

011 — 022

tan2as = —
2012

On those planes, the normal stresses are the average stress:

011 + 022

F11(as) = o2(as) = 5
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Mohr’s Circle for Plane Stress |

is a graphical representation of the state of stress that is easy to construct, use
and remember. The main advantage of Mohr's circle is that it provides
significant insight about the physical implications about specific states of
stress. The derivation is based on observing that equations (2) and (10) give
the parametric representation of a circle in the o = 011, 7 = 012 plane centered

. o2 . S
at 22722 0 of radius R = 4/ (Z1572)" 4 ¢%,. This can be seen by eliminating
the parameter o from those equations as follows:

. o11+02 011 — 02 .
011 — = cos2a + 012 sin 2
2 2
011 — 02
2

Squaring each equation and adding:

~ 011 + 022 2 "D g11 — 022 2 2
on———F— | top=|—%5—| ton

F1p = — sin2a + o1 cos 2«

2 2

or
[5'11 - O'avg]2 + 5'%2 B R2

giving the equation of the circle
mentioned above. T
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Mohr's Circle for Plane Stress |l

We note that a = 0 corresponds to point A in the figure and that as «
increases from 0 to 7/2, the various points of the circle correspond to the
values of G11(a), 12().

For a = /2 we reach point B. When we rotate our axes by this angle, we can
see that the stress components are G11 = 02,512 = —o12 (and 6» = o11). We
can also see that a rotation of value « of the cartesian plane normal (basis
vectors) corresponds to a rotation 2« in the circle in the same direction.
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Mohr's circle construction procedure and uses
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Mohr's circle construction procedure and uses

o Set up axes: o abscissa, T
ordinate (positive pointing
down)
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Mohr's circle construction procedure and uses

@ Set up axes: o abscissa, T
ordinate (positive pointing
down)

@ Plot reference point
A= (0‘11,0‘12) which
represents the stress

components on a plane with
a normal e; (o =0)

le—— 012 —>]

011
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Mohr's circle construction procedure and uses

Construction of Mohr's circle

@ Set up axes: o abscissa, T
ordinate (positive pointing
down)

@ Plot reference point
A= (0’11,0‘12) which
represents the stress
components on a plane with
a normal e; (a =0)

@ Plot circle's center C at point
(011+022 0)
2 )

24
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Mohr's circle construction procedure and uses

Construction of Mohr's circle

@ Set up axes: o abscissa, T
ordinate (positive pointing
down)

@ Plot reference point
A= (0’11,0‘12) which
represents the stress
components on a plane with
a normal e; (a =0)

@ Plot circle's center C at point
(011+022 0)
2 )

@ The distance between points
C and A is the radius of the
circle R
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Mohr's circle construction procedure and uses

Construction of Mohr's circle

Set up axes: o abscissa, T
ordinate (positive pointing
down)

Plot reference point

A= (0’11,0‘12) which
represents the stress
components on a plane with
a normal e; (a =0)

Plot circle's center C at point
(011;022 , 0)

The distance between points
C and A is the radius of the
circle R

sketch the circle centered at
C with radius R.
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Mohr's circle: construction procedure and uses

Stresses on arbitrary plane a

@ draw a line from C at an
angle « from line CA. The
coordinates of the point P
where this line intersects the
circle gives 611, 12

@ these coordinates can be
obtained from the figure
using trigonometry.
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Mohr's circle: construction procedure and uses

Principal Stresses and directions

@ o0y and oy (O’| > O’||)
correspond to points B and
D in the circle where there
are no shear stresses.

@ the angles of the principal
planes appear on the circle as
2ay, 2 measured from the
line CA to lines CB and CD,
respectively
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Mohr's circle: construction procedure and uses

Maximum in-plane shear stress
and directions F—o,

@ Obviously, points E and F
determine the maximum
shear stress 0s = £R.

2as
@ The angles 2as1, 2asp are \
measured from line CA to

lines CE and CF, respectively. c
For point E, the angle of

rotation is clockwise, and so
must be the rotation of the

2ag)

element. g
o It is clear that in both E
orientations the normal stress r

is the average stress.
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