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Examples
1 ai1 implies a11, a21, a31. (one free index)
2 xαyβ implies x1y1, x1y2, x2y1, x2y2 (two free indices).
3 aij implies a11, a12, a13, a21, a22, a23, a31, a32, a33 (two free indices implies 9

values).
4

∂σij
∂xj

+ bi = 0 has a free index (i), therefore it represents three equations:

∂σ1j

∂xj
+ b1 = 0, ∂σ2j

∂xj
+ b2 = 0, ∂σ3j

∂xj
+ b3 = 0

Indicial notation and summation convention 

A convenient way to write complicated expressions involving vectors and tensor. 

Definitions 

Free index: A subscript index i = 1, 3, ()i will be denoted a free index if it is 
not repeated in the same additive term where the index appears. Free means 
that the index represents all the values in its range. 

Latin indices will range from 1 to, (i , j, k, ... = 1, 2, 3), 
greek indices will range from 1 to 2, (α, β, γ, ... = 1, 2). 
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Indicial notation and summation convention 

A convenient way to write complicated expressions involving vectors and tensor. 

Definitions 

Free index: A subscript index i = 1, 3, ()i will be denoted a free index if it is 
not repeated in the same additive term where the index appears. Free means 
that the index represents all the values in its range. 

Latin indices will range from 1 to, (i , j, k, ... = 1, 2, 3), 
greek indices will range from 1 to 2, (α, β, γ, ... = 1, 2). 

Examples 

1 ai1 implies a11, a21, a31. (one free index) 
2 xαyβ implies x1y1, x1y2, x2y1, x2y2 (two free indices). 
3 aij implies a11, a12, a13, a21, a22, a23, a31, a32, a33 (two free indices implies 9 

values). 
∂σij4 
∂xj 

+ bi = 0 has a free index (i), therefore it represents three equations: 

∂σ1j ∂σ2j ∂σ3j
+ b1 = 0, + b2 = 0, + b3 = 0 

∂xj ∂xj ∂xj 
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Indicial notation and summation convention, continued 

Definitions 

Summation convention: When a repeated index is found in an expression 
(inside an additive term) the summation of the terms ranging all the possible 
values of the indices is implied, i.e.: 

3X 
ai bi = ai bi = a1b1 + a2b2 + a3b3 

i=1 

Note that the choice of index is immaterial: 

ai bi = ak bk 

Examples 

1 

2 

aii = a11 + a22 + a33 

ti = σij nj implies the three equations (why?): 

t1 = σ11n1 + σ12n2 + σ13n3 

t2 = σ21n1 + σ22n2 + σ23n3 

t3 = σ31n1 + σ32n2 + σ33n3 
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Indicial notation and summation convention, continued 

Other important rules about indicial notation: 
1 An index cannot appear more than twice in a single additive term, it’s 

either free or repeated only once. 

ai = bij cj dj is INCORRECT 

2 In an equation the lhs and rhs, as well as all the terms on both sides must 
have the same free indices 

ai bk = cijdkj free indices i, k, CORRECT 
ai bk = cijdkj + ei fjj + gkpi qr INCORRECT, second term is missing free 
index k and third term has extra free index r 
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Vectors I 

Definition of a basis in R3 

A basis in R3 is given by any set of linearly independent vectors ei , (e1, e2, e3). 
From now on, we will assume that these basis vectors are orthonormal, i.e., 
they have a unit length and they are orthogonal with respect to each other. 
This can be expressed using dot products: 

e1.e1 = 1, e2.e2 = 1, e3.e3 = 1, 

e1.e2 = 0, e1.e3 = 0, e2.e3 = 0, ... 
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Vectors II 

The Kronecker Delta 

Using indicial notation we can write these expressions in very succinct form as 
follows: 

ei .ej = δij 

In the last expression the symbol δij is defined as the Kronecker delta: (
1 if i = j,

δij = 
0 if i =6 j 
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Vectors III 

Examples 

ai δij =a1δ11 + a2δ21 + a3δ31, 

a1δ12 + a2δ22 + a3δ32, 

a1δ13 + a2δ23 + a3δ33 

=a11 + a20 + a30, 
a10 + a21 + a30, 
a10 + a20 + a3 

=a1, 

a2, 

a3 

or more succinctly: ai δij = aj , i.e., the Kronecker delta can be thought of an 

“index replacer”. 
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Vectors IV 

Definition of a vector 
A vector v will be represented as: 

v = vi ei = v1e1 + v2e2 + v3e3 

The vi are the components of v in the basis ei . These components are the 
projections of the vector on the basis vectors: 

v = vj ej 

Taking the dot product with basis vector ei : 

v.ei = vj (ej .ei ) = vj δji = vi 
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Transformation of basis 

Given two bases ei , ̃ek and a vector v whose components in each of these bases 
are vi and ṽk , respectively, we seek to express the components in basis in terms 
of the components in the other basis. Since the vector is unique: 

v = ṽmẽm = vnen 

Taking the dot product with ẽi : 

v.ẽi = ṽm(ẽm.ẽi ) = vn(en.ẽi ) 

But ṽm(ẽm.ẽi ) = ṽmδmi = ṽi from which we obtain: 

ṽi = v.ẽi = vj (ej .ẽi ) 

Note that (ej .ẽi ) are the direction cosines of the basis vectors of one basis on 
the other basis: dej .ẽi = kej kkẽi k cos ej ̃ei 
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Permutation tensor, cross product I 

Permutation Tensor: ⎧ ⎪0 when any two indices are equal⎨ 
�mnp = 1 when mnp is an even permutation of 1, 2, 3⎪⎩−1 when mnp is an odd permutation of 1, 2, 3 

Definition 

1

2

3

Even permutation

1

2

3

Odd permutation
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Permutation tensor, cross product II 

Examples 

�123 = �231 = �312 = 1, �213 = �321 = �132 = −1, �112 = �233 = �222 = · · · = 0, 

Source and usefulness: Cross products of cartesian basis vectors 

e1 × e1 = 0, e2 × e2 = 0, e3 × e3 = 0, 

e1 × e2 = (+1)e3, e2 × e3 = (+1)e1, e3 × e1 = (+1)e2, 

e1 × e3 = (−1)e2, e3 × e2 = (−1)e1, e2 × e1 = (−1)e3, 

These can all be captured by 

ei × ej = �ijk ek 
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Permutation tensor, cross product III 

Example 

e1 × e2 = �121 e1 + �122 e2 + �123 e3 = e3|{z} |{z} |{z} 
=0 =0 =1 

We can also observe that 

(ei × ej ) · ek = (�ijl el ) · ek = �ijl δkl = �ijk 

The permutation tensor can be used to express some of the other familiar 
vector operations involving cross products. 

Cross product of two vectors 

v × w = (vi ei ) × (wj )ej ) = vi wj (ei × ej ) = vi wj �ijk ek 

Mixed or triple product of three vectors 

(v × w) · u = vi wj �ijl el · (uk ek ) = vi wj uk �ijk 
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Permutation tensor, cross product IV 

Since the triple product can also be obtained from the determinant of the 3x3 
matrix made of the components of the three vectors (either arranged in row or 
column form), we can use this to express the determinant of a 3x3 matrix A 
with components aij as follows. Assign the rows of the matrix to the 
components of the vectors above as follows: vi = a1i , wj = a2j , uk = a3k , then: 

Determinant of a 3x3 Matrix 

|A| = a1i a2j a3k �ijk 
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Internal forces and equilibrium I 

Consider a body in equilibrium under external surface and body forces: 

S

n

surface forces

body forces

S o
R

Mo

d f
r(x)

body forces

We imagine a cut through the body with a plane defining the surface internal 
surface S with normal n. The FBD on the right shows the resultant internal 
force (R) and moment (Mo ) required from equilibrium for the left part. We 
assume that these are provided by the collective action of infinitesimal 
pointwise forces df acting on the points of S. 
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Internal forces and equilibrium II 

R and Mo are therefore obtained as the following integrals: Z 
R = df 

SZ 
Mo = r × df 

S 

It should be clear that t is a force per unit area defined at each point of surface 
S obtained as the limiting value of the resultant force f acting on a (finite) 
surface area element ΔS when this tends to zero. 
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Stress Vector I 

Definition 

The stress vector at a point on ΔS is defined as: 

ft = lim (1)
ΔS→0 ΔS 

Notes: 
The integral of the stress vector in the area defines the resultant internal 
force necessary to keep the left side in equilibrium (as we discussed before) Z 

R = tdS 
S 

Similarly, the resultant internal moment vector Mo with respect to a point 
o is given by: Z 

Mo = r × tdS 
S 
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Stress Vector II 

In other words, the internal force and moment vectors are the equipollent force 
system corresponding to the colective action of the continuously distributed 
stress vectors t on the cut surface. 
If the cut had gone through the same point under consideration but along a 
plane with a different normal, the stress vector would have been different. Let’s 
consider the three stress vectors t(i) acting on the planes normal to the 
coordinate axes. 

e2

e3

e1

x1
t(1)

x2

t(2)

x3
t(3)

σ11
σ12

σ13
σ21

σ22

σ23σ31
σ32

σ33
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Stress Vector III 

e2

e3

e1

x1
t(1)

x2

t(2)

x3
t(3)

σ11
σ12

σ13
σ21

σ22

σ23σ31
σ32

σ33

Let’s also decompose each t(i) in its three components in the coordinate system 
ei (this can be done for any vector) as (see Figure): 

t(i) = σij ej (2) 

σij is the component of the stress vector t(i) along the ej direction. 
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Introduction of the Stress Tensor I 

Different planes passing through the point with different normals will have 
different stress vectors t(n). Is there a relation among them? To answer this 
invoke equilibrium of the (shrinking) tetrahedron of material: 

n̄

e1

e2

e3
−t(1)

t(n)−t(2)

−t(3)

Cauchy’s tetrahedron: 
equilibrium of a tetrahedron 

shrinking to a point. 

The area of the faces of the tetrahedron 
are ΔS1, ΔS2, ΔS3 and ΔS. 
We have used Newton’s third law of 
action and reaction: t(−n) . To = −t(n) 
enforce equilibrium, we must consider 
the force vectors (stress vectors 
multiplied by respective areas) acting 
on each face of the tetrahedron: 

t(n)ΔS −t(1)ΔS1 −t(2)ΔS2 −t(3)ΔS3 = 0 
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Introduction of the Stress Tensor II 

The surface area elements are related by the following formula: ΔSni = ΔSi . 
Proof in the following mathematical aside: 

By virtue of Green’s Theorem: Z Z 
rφdV = nφdS 

V S 

applied to the function φ = 1, we get Z 
0 = ndS 

S 

which applied to our tetrahedron gives: 

0 = ΔSn − ΔS1e1 − ΔS2e2 − ΔS3e3 

If we take the scalar product of this equation with ei , we obtain: 

ΔS(n · ei ) = ΔSi 

or 
ΔSi = ΔSni 
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Introduction of the Stress Tensor III 

Replace in equilibrium expression: � � 
t(n) t(1) t(2) t(3)ΔS − n1 − n2 − n3 = 0|{z} |{z} |{z} 

(n·e1 ) (n·e2) (n·e3) 

which can be written more simply (using summation convention) as: 

t(n) t(i)= (n · ei ) (3)| {z } 
ni 
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Introduction of the Stress Tensor IV 

Example 

Consider a cut at an angle α in a truss member of cross sectional area A and 
subject to a force of magnitude F . The bar is subject to a uniform uniaxial 
stress σ = F

A . The stress vector at any point on a plane of normal e1 is (see 
t(2) = t(3)figure) t(1) = σe1. = 0. What is t(n) where 

n = ẽ1 = cos (α)e1 + sin (α)e2? 

A

e1

e2 n = ẽ1

ẽ2
α

−e1

−e2

−t(1)

t(n) e1)= t(˜ = ni t(i) = n1t(1) = cos (α) σe1 = 
F 
A e1 

cos (α) 

This gives us t(n) in the basis ei . What about in basis ẽi ? � � � � � � 
t(ẽ1) t(ẽ1) t(ẽ2) t(ẽ1)= · ẽ1 ẽ1 + · ẽ2 ẽ2 = · ẽi ẽi 

25
= (cos (α) σe1 · ẽ1) ẽ1 + (cos (α) σe1 · ẽ2) ẽ2 

= σ cos 2 (α)ẽ1 + σ cos (α)(− sin (α))ẽ2 



Definition of stress tensor I 

Going back to Eqn. (3), we can also pull n as a “common factor” and create a 
new type of mathematical expression (tensor product): � � � � 

t(n) = n · e1t(1) + e2t(2) + e3t(3) = n · e1 ⊗ t(1) + e2 ⊗ t(2) + e3 ⊗ t(3) (4) 

The factor in parenthesis is the definition of the Cauchy stress tensor σ: 

Definition 

σ = e1 ⊗ t(1) + e2 ⊗ t(2) + e3 ⊗ t(3) = ei ⊗ t(i) 
(5) 

t(n) = n · σ 

Note these are tensorial expressions (independent of the vector and tensor 
components in a particular coordinate system). To obtain the tensorial 
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Definition of stress tensor II 

components in our rectangular system we replace the expressions of t(i) from 
Eqn.(2) 

Definition (Stress tensor representation in cartesian coordinate basis ei ) 

σ = ei σij ej = σij ei ej (6)|{z} 
t(i) 

where ⎛ ⎞ 
σ11 σ12 σ13 ⎝ ⎠σij = σ21 σ22 σ23 

σ31 σ32 σ33 

are the components of the stress tensor σ in the cartesian coordinate system 
ei . Note that σij represent the cartesian components of the stress vectors 
acting on the planes with normals ei , i.e. t(i) 
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Definition of stress tensor III 

The cartesian components of the stress vector on the plane with normal n can 
be obtained by noticing that: � � � � 

t(n) = n · σij ei ej = σij n · ei ej = σij ni ej (7) 

t(n) j = tj (n) = σij ni (8) 
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