
  
  

 

 
  

         

  
        

   
    

16.001 Unified Engineering 
Materials and Structures 

Lecture M8-M9 
Statically Indeterminate Systems 

Reading assignments: Connor’s: Ch. 2, CDL: Ch. 2, 2.3 2.4 

Instructor: Raúl Radovitzky 
Teaching Assistants: Grégoire Chomette, Michelle Xu, and Daniel Pickard

Massachusetts Institute of Technology 
Department of Aeronautics & Astronautics 
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https://link.springer.com/chapter/10.1007/978-1-4614-3262-3_2
https://canvas.mit.edu/files/692573/download?download_frd=1


Outline 

1 Lecture M7 - Statically Indeterminate Systems 
Force-elongation relation for bars 
Deformation of statically determinate trusses 

Free Body Diagram & Global Equilibrium 
Method of Joints to determine force in each rod 
Constitutive relation to determine the deformation of each rod 
Compatibility to compute the displacement of joint C 

Solving statically indeterminate trusses. 
Free Body Diagram & Global Equilibrium 
Method of Joints to determine force in each rod 
Constitutive relation to determine the deformation of each rod 
Compatibility condition to determine the displacement of joint C 
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Force-elongation relation for bars 

Material test 

δ

F

E

1

ǫ = δ

L

σ =
F

A

L: length of the bar 
A: area of the cross section of 
the bar 
E : material’s Young’s modulus 
δm: elongation of the bar due 
to mechanical loading 
F : applied force 

Clearly, from here we get: 
EA 

F = δm
L 
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Deformation of bars due to temperature changes: Thermal strains 

Temperature changes 

δθ
∆θ

L: length of the bar 
α: material’s coefficient of thermal expansion 
δθ: elongation of the bar due to thermal expansion 
F : applied force 
A temperature change Δθ causes an elongation (strain, 
not stress or force) that is proportional to the length of 
the bar L and to Δθ. Temperature increases Δθ > 0 
produces en expansion δθ > 0 and viceversa. Then: 

δθ = αΔθL 

Dimensions of α : [δθ] = �L = [α]Θ�L, → [α] = Θ−1 

In the SI, the units of α will be K −1 . Typical values of α 
are: αaluminum = 23 × 10−6K −1, αsteel = 
13 × 10−6K −1, αtitanium = 9 × 10−6K −1 . 

Remember 

Temperature changes cause deformations (strains), not stresses. If these 
deformations are constrained, then “thermal stresses” arise. 
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Deformation of bars due to combined temperature changes and loads 

Combined temperature and force loading of bars 

By superposition, the combined loading will produce a total elongation δT 

which is the sum of the elongation due to the applied force or mechanical 
elongation δm, and the elongation produced by thermal expansion or thermal 
elongation δθ 

δT = δm + δθ 

PL 
δT = + αΔθL| {z }EA|{z} δθ 

δm 

Example: Built-in bar subject to temperature change 

∆θ =

δθ

∆θ +

δm

P

∆θ

Use superposition: 

δT = 0 = δm + δθ , → δm = −δθ 

P�L 
= −αΔθ�L, → P = −αEAΔθ 

EA 

5i.e. a temperature increase (decrease) 
causes a compressive (tensile) force. 



Deformation of statically determinate trusses 

Objective: Compute the displacements of any joint in the truss. 

A B

C

L
L

P
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Free Body Diagram & Global Equilibrium 

Equilibrium 

A B

C

L
L

P

R
A

1

R
A

2

R
B

1

R
B

2
Note that the individual reaction 
components at each pin joint are 
not independent, as their resultant 
needs to be aligned with the bar. 
This is required as the bar can 
only carry axial forces. 

The reaction at the supports will 
therefore be of the same 
magnitude as the internal force in 
the respective bar, with an 
opposite direction. 

It suffices then to find out the 
internal loads on the bars, which 
can be done by applying method 
of joints to joint C. 
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Equilibrium of joint C

ΣF1: −
√
2

2
FCA +

√
2

2
FCB = 0

ΣF2:

√
2

2
FCA +

√
2

2
FCB − P = 0

Forces in rods:

From ΣF1: FCA = FCB

From ΣF2: FCA =
P√
2

Method of Joints to determine force in each rod 

A B

C

L
L

P

FCBFCA
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Forces in rods:

From ΣF1: FCA = FCB

From ΣF2: FCA =
P√
2

Method of Joints to determine force in each rod 

A B

C

L
L

P

FCBFCA

Equilibrium of joint C 
√ √ 
2 2 

ΣF1: − FCA + FCB = 0 
2 2√ √ 
2 2 

ΣF2: FCA + FCB − P = 0 
2 2 
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Method of Joints to determine force in each rod 

A B

C

L
L

P

FCBFCA

Equilibrium of joint C 
√ √ 
2 2 

ΣF1: − FCA + FCB = 0 
2 2√ √ 
2 2 

ΣF2: FCA + FCB − P = 0 
2 2 

Forces in rods: 

From ΣF1: FCA = FCB 

P 
From ΣF2: FCA = √ 

2 
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Method of Joints to determine force in each rod 

A B

C

L
L

P

FCBFCA

Equilibrium of joint C 
√ √ 
2 2 

ΣF1: − FCA + FCB = 0 
2 2√ √ 
2 2 

ΣF2: FCA + FCB − P = 0 
2 2 

Forces in rods: 

From ΣF1: FCA = FCB 

P 
From ΣF2: FCA = √ 

2 
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Method of Joints to determine force in each rod 

A B

C

L
L

P

FCBFCA

Equilibrium of joint C 
√ √ 
2 2 

ΣF1: − FCA + FCB = 0 
2 2√ √ 
2 2 

ΣF2: FCA + FCB − P = 0 
2 2 

Forces in rods: 

From ΣF1: FCA = FCB 

P 
From ΣF2: FCA = √ 

2 

Having figured out the internal forces independently, we can compute the 
deformation of each bar and after the overall displacement of joint C 
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Constitutive relation to determine the deformation of each rod 

A B

C

+
P

√

2 +

P
√ 2

L
L

P

P

2

P

2 P

2

P

2 Let’s keep it simple for now and make 
the following assumptions for each rod: 

Same Young’s modulus, E 

Same cross section, A 
EA 

Stiffness: K = 
L 

Constitutive relation: 

between force FXY and elongation 
δ 

LP 
FXY = K δ ⇒ δ = √ 

2EA 

Next, compatibility: compute displacement of joint C. 
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Constitutive relation to determine the deformation of each rod 

A B

C

+
P

√

2 +

P
√ 2

P

P

2

P

2 P

2

P

2

C
A

C
B

δδ

Let’s keep it simple for now and make 
the following assumptions for each rod: 

Same Young’s modulus, E 

Same cross section, A 
EA 

Stiffness: K = 
L 

Constitutive relation: 

between force FXY and elongation 
δ 

LP 
FXY = K δ ⇒ δ = √ 

2EA 

Next, compatibility: compute displacement of joint C. 
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C ∈ Circle(A, L+δ) ∩ Circle(B,
L+δ)

Small displacements and small
rotations:

Circle(A, L+δ) ≈ Tangent @CA

Circle(B, L+δ) ≈ Tangent @CB

C ∈ Tangent @CA ∩ Tangent @CB

Compatibility to compute the displacement of joint C 

A B

C

P

C
A

C
B

δδ

Compatibility relations: 

C ∈ Circle(A, L+δ) 

C ∈ Circle(B, L+δ) 

15



Small displacements and small
rotations:

Circle(A, L+δ) ≈ Tangent @CA

Circle(B, L+δ) ≈ Tangent @CB

C ∈ Tangent @CA ∩ Tangent @CB

Compatibility to compute the displacement of joint C 

A B

C

c

P

C
A

C
B

δδ

u
C

Compatibility relations: 

C ∈ Circle(A, L+δ) 

C ∈ Circle(B, L+δ) 

C ∈ Circle(A, L+δ) ∩ Circle(B, 
L+δ) 
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C ∈ Tangent @CA ∩ Tangent @CB

Compatibility to compute the displacement of joint C 

A B

C

P

C
A

C
B

δδ

Compatibility relations: 

C ∈ Circle(A, L+δ) 

C ∈ Circle(B, L+δ) 

C ∈ Circle(A, L+δ) ∩ Circle(B, 
L+δ) 

Small displacements and small 
rotations: 

Circle(A, L+δ) ≈ Tangent @C A 

Circle(B, L+δ) ≈ Tangent @C B 
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Compatibility to compute the displacement of joint C 

A B

C

c̃

P

C
A

C
B

δδ

u
C

Compatibility relations: 

C ∈ Circle(A, L+δ) 

C ∈ Circle(B, L+δ) 

C ∈ Circle(A, L+δ) ∩ Circle(B, 
L+δ) 

Small displacements and small 
rotations: 

Circle(A, L+δ) ≈ Tangent @C A 

Circle(B, L+δ) ≈ Tangent @C B 

C ∈ Tangent @C A ∩ Tangent @C B 
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Compatibility to compute the displacement of joint C 

A B

C

c̃

P

C
A

C
B

δδ

u
C

Compatibility relations: 

C ∈ Circle(A, L+δ) 

C ∈ Circle(B, L+δ) 

C ∈ Circle(A, L+δ) ∩ Circle(B, 
L+δ) 

Small displacements and small 
rotations: 

Circle(A, L+δ) ≈ Tangent @C A 

Circle(B, L+δ) ≈ Tangent @C B 

C ∈ Tangent @C A ∩ Tangent @C B 

C ?How to relate δ and u 
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Elongation (greatly exaggerated)

Deformed bar AC 0 can rotate
around point A, circular motion
approximated by tangent C 0c.

Deformed bar Ac

Displacement vector
uC = uC

1 e1 − uC
2 e2

Obtain sought relation by noticing
that the elongation δAC is
ALWAYS the projection of the
displacement vector on the
undeformed direction of the bar.

CHow to relate rod deformation δAC to joint displacement u 

A

C
eAC

e1

e2

θ

Undeformed bar AC and basis 
vectors: eAC = cos θe1 − sin θe2 
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Deformed bar AC 0 can rotate
around point A, circular motion
approximated by tangent C 0c.

Deformed bar Ac

Displacement vector
uC = uC

1 e1 − uC
2 e2

Obtain sought relation by noticing
that the elongation δAC is
ALWAYS the projection of the
displacement vector on the
undeformed direction of the bar.

CHow to relate rod deformation δAC to joint displacement u 

A

C
eAC

e1

e2

θ

C
′

δ A
C

Undeformed bar AC and basis 
vectors: eAC = cos θe1 − sin θe2 

Elongation (greatly exaggerated) 
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Deformed bar Ac

Displacement vector
uC = uC

1 e1 − uC
2 e2

Obtain sought relation by noticing
that the elongation δAC is
ALWAYS the projection of the
displacement vector on the
undeformed direction of the bar.

CHow to relate rod deformation δAC to joint displacement u 

A

C
eAC

e1

e2

θ

C
′

δ A
C

c

Undeformed bar AC and basis 
vectors: eAC = cos θe1 − sin θe2 

Elongation (greatly exaggerated) 

Deformed bar AC 0 can rotate 
around point A, circular motion 
approximated by tangent C 0 c. 
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Displacement vector
uC = uC

1 e1 − uC
2 e2

Obtain sought relation by noticing
that the elongation δAC is
ALWAYS the projection of the
displacement vector on the
undeformed direction of the bar.

CHow to relate rod deformation δAC to joint displacement u 

A

C
eAC

e1

e2

θ

C
′

δ A
C

c

Undeformed bar AC and basis 
vectors: eAC = cos θe1 − sin θe2 

Elongation (greatly exaggerated) 

Deformed bar AC 0 can rotate 
around point A, circular motion 
approximated by tangent C 0 c. 

Deformed bar Ac 
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Obtain sought relation by noticing
that the elongation δAC is
ALWAYS the projection of the
displacement vector on the
undeformed direction of the bar.

CHow to relate rod deformation δAC to joint displacement u 

A

C
eAC

e1

e2

θ

C
′

δ A
C

c

u
Cu

C

2

u
C

1

Undeformed bar AC and basis 
vectors: eAC = cos θe1 − sin θe2 

Elongation (greatly exaggerated) 

Deformed bar AC 0 can rotate 
around point A, circular motion 
approximated by tangent C 0 c. 

Deformed bar Ac 

Displacement vector 
C C C u = u1 e1 − u2 e2 
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CHow to relate rod deformation δAC to joint displacement u 

A

C
eAC

e1

e2

θ

C
′

δ A
C

c

u
Cu

C

2

u
C

1

Undeformed bar AC and basis 
vectors: eAC = cos θe1 − sin θe2 

Elongation (greatly exaggerated) 

Deformed bar AC 0 can rotate 
around point A, circular motion 
approximated by tangent C 0 c. 

Deformed bar Ac 

Displacement vector 
C C C u = u1 e1 − u2 e2 

Obtain sought relation by noticing 
that the elongation δAC is 
ALWAYS the projection of the 
displacement vector on the 
undeformed direction of the bar. 

25



CHow to relate rod deformation δAC to joint displacement u 

A

C
eAC

e1

e2

θ

C
′

δ A
C

c

u
Cu

C

2

u
C

1

Undeformed bar AC and basis 
vectors: eAC = cos θe1 − sin θe2 

Elongation (greatly exaggerated) 

Deformed bar AC 0 can rotate 
around point A, circular motion 
approximated by tangent C 0 c. 

Deformed bar Ac 

Displacement vector 
C C C u = u1 e1 − u2 e2 

Obtain sought relation by noticing 
that the elongation δAC is 
ALWAYS the projection of the 
displacement vector on the 
undeformed direction of the bar. 

u C · eAC = δAC 

C C AC u1 cos θ + (−u2 )(− sin θ) = δ 

26 C C AC u1 cos θ + u2 sin θ = δ 



vector.

CHow to relate rod deformation δAC to joint displacement u 

A

C
eAC

e1

e2

θ

C
′

δ A
C

c

u
Cu

C

2

u
C

1

Undeformed bar AC and basis 
vectors: eAC = cos θe1 − sin θe2 

Elongation (greatly exaggerated) 

Deformed bar AC 0 can rotate 
around point A, circular motion 
approximated by tangent C 0 c. 

Deformed bar Ac 

Displacement vector 
C C C u = u1 e1 − u2 e2 

Obtain sought relation by noticing 
that the elongation δAC is 
ALWAYS the projection of the 
displacement vector on the 
undeformed direction of the bar. 

u C · eAC = δAC 

C C AC u1 cos θ + (−u2 )(− sin θ) = δ 

27 C C AC u1 cos θ + u2 sin θ = δ 

For each bar, compatibility equation relating elongation with joint displacement 



Computation of the displacement of joint C 

A B

C

c̃

P

C
A

C
B

δδ

u
C

From constitutive relation: 

LP 
δ = √ 

2EA 

From displacement compatibility: 

δ = u C 
1 cos θ + u C 

2 sin θ 

From symmetry: 
√ 
2C 

1 
C 
2 = 0 ⇒ δ = uu 
2 

Then: 
LP 

u C 
2 = 

2EA 

Use a very similar approach when solving statically indeterminate systems. 
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Solving statically indeterminate trusses 

Objective: Compute internal forces in bars and displacements of joints. 

A B

C

D

α β

L

P
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Free Body Diagram & Global Equilibrium 

A B

C

D

α β

L

P

R
A

1

R
A

2

R
B

1

R
B

2

R
D

1

R
D

2
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Free Body Diagram & Global Equilibrium 

A B

C

D

α β

L

P

R
A

1

R
A

2

R
B

1

R
B

2

R
D

1

R
D

2

Notice that in this case the FBD of the 
overall structure does not help much: 
it exposes six unknown reaction com-
ponents but we know that the reac-
tions will need to be aligned with the 
corresponding bars and have the same 
magnitude and opposite direction, i.e. 
the reactions are fully determined once 
the forces on the bars are known. This 
means that we could skip the compu-
tation of the reactions at this point and 
concentrate on the bars. For complete-
ness, we provide the equations. 
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Free Body Diagram & Global Equilibrium 

A B

C

D

α β

L

P

R
A

1

R
A

2

R
B

1

R
B

2

R
D

1

R
D

2

Equilibrium 
A 
1 

D 
1 

B 
1ΣF1: R + R + R = 0 

− PA 
2 

D 
2 

B 
2ΣF2: R + R + R = 0 

ΣMD : 
L − R | tan α| 

L 
| tan β| 

A 
2 

B 
2R = 0+ 
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Free Body Diagram & Global Equilibrium 

A B

C

D

α β

L

P

R
A

1

R
A

2

R
B

1

R
B

2

R
D

1

R
D

2

Reactions: 

In principle 6 unknowns & 3 
equations 

However, members can only 
carry axial force: components of 
each reaction force vector are 
related (i.e. vector direction 
known, only magnitude is 
unknown, only three unknowns 

Another however: not really 3 
equations since all reactions 
concurrent to point C, still 
indeterminate) 
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Equilibrium of joint C

ΣF1: cosβFCB − cosαFCA = 0

ΣF2:
+ sinβFCB + sinαFCA + FCD = P

Equilibrium gives two equations and
three unknowns, the problem is STAT-
ICALLY INDETERMINATE

Method of Joints to determine force in each rod 

A B

C

D

α β

L

P

FCB

FCA

FCD
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Method of Joints to determine force in each rod 

A B

C

D

α β

L

P

FCB

FCA

FCD

Equilibrium of joint C 

ΣF1: cos βFCB − cos αFCA = 0 

ΣF2: 
+ sin βFCB + sin αFCA + FCD = P 

Equilibrium gives two equations and 
three unknowns, the problem is STAT-
ICALLY INDETERMINATE 
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Method of Joints to determine force in each rod 

A B

C

D

α β

L

P

FCB

FCA

FCD

Equilibrium of joint C 

ΣF1: cos βFCB − cos αFCA = 0 

ΣF2: 
+ sin βFCB + sin αFCA + FCD = P 

Equilibrium gives two equations and 
three unknowns, the problem is STAT-
ICALLY INDETERMINATE 
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Method of Joints to determine force in each rod 

A B

C

D

α β

L

P

FCB

FCA

FCD

Equilibrium of joint C 

ΣF1: cos βFCB − cos αFCA = 0 

ΣF2: 
+ sin βFCB + sin αFCA + FCD = P 

Equilibrium gives two equations and 
three unknowns, the problem is STAT-
ICALLY INDETERMINATE 

We need to consider the deformation of each rod 
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Deformation in each rod:

rod CA: δCA =
L

sinα

FCA

EA

rod CD: δCD =
LFCD

EA

rod CB: δCB =
L

sinβ

FCB

EA

Constitutive relation to determine the deformation of each rod 

A B

C

D

α β

L

C
A

C
B

C
D

δ
C
A

δCB

δCD

Constitutive relation: for simplicity, we 
will assume: 

Same Young’s modulus, E 

Same cross section, A 
LXY FXY

δXY = 
EA 
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Constitutive relation to determine the deformation of each rod 

A B

C

D

α β

L

C
A

C
B

C
D

δ
C
A

δCB

δCD

Constitutive relation: for simplicity, we 
will assume: 

Same Young’s modulus, E 

Same cross section, A 
LXY FXY

δXY = 
EA 

Deformation in each rod: 

rod CA: δCA = 
L FCA 

sin α EA 

rod CD: δCD = 
LFCD 

EA 

rod CB: δCB = 
L FCB 

sin β EA 
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Constitutive relation to determine the deformation of each rod 

A B

C

D

α β

L

C
A

C
B

C
D

δ
C
A

δCB

δCD

Constitutive relation: for simplicity, we 
will assume: 

Same Young’s modulus, E 

Same cross section, A 
LXY FXY

δXY = 
EA 

Deformation in each rod: 

rod CA: δCA = 
L FCA 

sin α EA 

rod CD: δCD = 
LFCD 

EA 

rod CB: δCB = 
L FCB 

sin β EA 

This adds three equations but also three unknowns, we need to enforce 
compatibility to close the system of equations 
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Deformation in each rod:

rod CD: uC
2 = δCD

Then:⎧⎪⎪⎪⎨⎪⎪⎪⎩
δCA = uc

1 cosα+ δCD sinα

δCB = −uc
1 cosβ + δCD sinβ

δCD = uc
2

Compatibility condition to determine the displacement of joint C 

A B

C

D

α β

L

C
A

C
B

C
D

δ
C
A

δCB

δCD

c
u

Compatibility condition: 

Small displacements & rotations 

δCY = u1 
C cos θ + u2 

C sin θ 
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⎪⎪
⎪⎪

Compatibility condition to determine the displacement of joint C 

A B

C

D

α β

L

C
A

C
B

C
D

δ
C
A

δCB

δCD

c
u

Compatibility condition: 

Small displacements & rotations 
C CδCY cos θ + u sin θ= u1 2 

Deformation in each rod: 
C rod CD: = δCDu2 

Then:⎧ cδCA = u ⎪⎨ 
cos α + δCD sin α1 

c 
1δCB ⎪⎩ 

= −u cos β + δCD sin β 

c 
2δCD = u 
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⎪⎪
⎪⎪

Compatibility condition to determine the displacement of joint C 

A B

C

D

α β

L

C
A

C
B

C
D

δ
C
A

δCB

δCD

c
u

Compatibility condition: 

Small displacements & rotations 
C CδCY cos θ + u sin θ= u1 2 

Deformation in each rod: 
C rod CD: = δCDu2 

Then:⎧ cδCA = u ⎪⎨ 
cos α + δCD sin α1 

c 
1δCB ⎪⎩ 

= −u cos β + δCD sin β 

cδCD = u2 

Let’s put everything together and count unknowns and equations 
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Putting everything together 

�
A B

C

D

α β

L

P

Equilibrium 

cos βFCB − cos αFCA = 0 
sin βFCB + sin αFCA + FCD = P 

Constitutive relation 
EA 
L sin αδCA = FCA 
EA 
L sin βδCB = FCB 
EA 
L δCD = FCD 

⎧⎨ 

Compatibility 
c C 

⎩ 

⎧⎨ δCA cos α + u sin α= u1 

= u1 

2 
c CδCB cos β + u sin β2⎩ CδCD = u2 

We have 7 unknowns and 7 equations. Let’s solve them for β = α. 
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Special case: β = α. 

A B

C

D

α β

L

P

Equilibrium � 
FCB = FCA (1)
2 sin αFCA + FCD = P 

Constitutive relation ⎧ ⎨ EA sin αδCA = FCAL 
EA sin αδCB = FCB (2)⎩ L 
EA δCD = FCDL 

Compatibility � C C = 0, δCDu = u1 2 (3)CδCA = δCB = u sin α2 
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Special case: β = α. 

A B

C

D

α β

L

P

Replacing (3) in (2) and then in (1) 

EA C EA C2 sin2 αu2 sin α + u2 = P |L {z } |L{z } 
FCA FCD 

which gives: 

C P 1 
u2 = L 

EA 2 sin3 α + 1 

1 
FCD = P 

2 sin3 α + 1 

sin α 
FCA = FCB = P 

2 sin3 α + 1 
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