FinTech:

Shaping the Financial World

April 13, 2020

Class 5: Overview

- The Internet and the Payment Riddle
- Money
- Satoshi Nakamoto's Innovation
- Crypto Markets
- Blockchain Technology Use Cases
- Challenges & Assessing Viability of Use Cases
- Central Bank Digital Currencies
- Ground Truths

Class 5: Readings

- 'Even if a Thousand Projects Don't Make It, Blockchain Is Still a Change Catalyst' Gensler, CoinDesk
- 'Economics of Money & Blockchain Technology and Evaluating Projects' MIT Cryptocurrency Online Course
- 'Responses from Big Finance' MIT Cryptocurrency Online Course
- 'The technology of retail central bank digital currency' Bank of International Settlement

Class 5: Study Questions

- How does Bitcoin fit within the history of money, the emergence of the Internet and failed attempts of cryptographic payment systems?
- What are the strategic and tactical considerations in assessing the viability and value proposition of a blockchain technology project? How can you separate rigorous analysis from mere assertion and hype in the blockchain ecosystem?
- What strategic considerations should go into Central Banks thinking of expanding access to digital reserves through central bank digital currency (CBDC)?

Internet and the Payments Riddle

- How to Move Value on the Internet
 - Securely
 - Efficiently

- As a Packet of Data Peer to Peer
- While Prohibiting Double Spending

Early Cryptographic Digital Currencies ... Failed

Notable Efforts

- DigiCash (1994), Mondex (1994), CyberCash (1994)
- E-gold (1996), Hashcash (1997)
- Bit Gold (1998), B-Money (1998), Lucre (1999)

<u>Hurdles</u>

- Merchant adoption
- Centralization
- Double Spending
- Consensus

Early Digital & Mobile Payment Solutions

Secure Socket Layer Transport Layer Security SSL/TLS - 1996

Cryptographic Protocols for Secure Network Communication

1998

2003

2007

Money

Plato:

- Money is a 'symbol' devised for the purpose of exchanges
- Opposed using gold or silver for money

Aristotle:

- Solves the 'problem of commensurability'
- 'Money is a guarantee that we may have what we want in the future. Though we need nothing at the moment it insures the possibility of satisfying a new desire when it arises.'
- Four absolutes to have 'Universal Value':
 - Durable, Portable, Divisible & Intrinsic Value

Modern Characteristics:

• Durable, Portable, Divisible, Uniform, Acceptable, & Stable

Image is in the public domain.

What is the Role of Money?

© Source Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Image by Rob Pongsajapan on flickr. CC BY.

mage by ajalfaro on flickr. CC BY-NC-SA

Medium of Exchange

Store of Value

Unit of Account

Money

Image is in the public domain.

Cowrie Shells Nigeria

Image by Daderot on Wikimedia. License: CCO.

Silver Dekadrachm Greece

Image is in the public domain.

Jiaozi Promissory Note Song Dynasty China

Image is in the public domain.

Private Bank Notes United States

Image by epSos.de on Wikimedia. CC BY

Fiat Paper Money

Image by markus 119 on Flickr. CC BY

Alipay Mobile Wallet China

Fiat Currency

- Represented by:
 - Central Bank Notes
 - Central Bank Reserves &
 - Commercial Bank Deposits
- Relies upon System of Ledgers
- Very Significant Network Effects:
 - Accepted for Taxes
 - Legal Tender for All Debts Public & Private
 - Accepted throughout Economy / Optimum Currency Area

Image by epSos.de on Wikimedia. CC B

Money's Future?

© DK. (Publishing) All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Credit Chip Galactic Republic

Wupiupi Hutts on Tatooine

© Hasbro. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Imperial Credit Coin The Empire

Satoshi Nakamoto: Bitcoin P2P e-cash paper October 31, 2008

"I've been working on a new electronic cash system that's fully peer-to-peer, with no trusted third party."

Blockchain Technology

timestamped append-only ledger

multiple party consensus protocol

decentralized auditable database

Secured via cryptography

- Hash functions for integrity
- Digital signatures for consent

Addresses 'cost of trust'
(Byzantine Generals problem)
May use Native Token as incentive

- Permissioned
- Permissionless

Tamper resistant record of

- Transfers of value
- Running of computer code

Smart Contracts

- "A set of promises,
- specified in digital form,
- including protocols
- within which the parties perform on these promises."

Nick Szabo, 1996

However

- Smart Contracts may not be 'Smart'
- Smart Contracts may not be 'Contracts'

Crypto Token Sectors

- Payment / Store of Value Tokens ≈ \$152B 76%
 - Bitcoin (\$128B), ...
- Platform Tokens ≈ \$29B 15%
 - Ethereum (\$18B), ...
- DApp Tokens ≈ \$10B 5%
 - Binance Coin (\$2.3B), ...
- Stable Value Tokens ≈ \$8B 4%
 - Tether (\$6.4B), ...
- Tokenized Securities and Assets

Blockchain Tech Potential Uses

- Speculative Investing
- Crowdfunding through Initial Coin Offerings
- Tokens for Exchanges, Gaming, Gambling, DeFi & File Sharing
- Tokenized Fiat (Stable Value Coins), Securities & Assets
- Payment Systems
- Trade Finance & Supply Chain Management
- Clearing, Settlement & Processing
- Central Bank Initiatives
- Digital ID & MIT Diploma
- Medical Records, Property Records, Internet of Things, Voting ...

Blockchain Technology Challenges

- Scalability, Performance & Efficiency
- Privacy
- Security
- Interoperability
- Governance
- Public Policy Frameworks
- Commercial Use Cases

Framework for Comparing Costs & Trade-offs (Coase)

Coordination, governance, security, scalability

Capture, Rents, Single Point of Failure

Vitalik Buterin Trilemma

Assessing Use Cases – First Considerations

Which side of a divide the project is on?

Is the project one that services the new crypto asset class?

Is the project one uses blockchain technology and cryptocurrencies?

Projects servicing the cryptocurrency space:

Custody solution – Coinbase, Fidelity

Software provider – Blockstream

Hardware company – BitMain

Mining pool operator – BTC, F2Pool, Poolin

Exchange operation – Binance, Coinbase

Wallet provider – Circle

Asset manager – Bitcoin Suisse, Galaxy

News service – CoinDesk

Assessing Use Cases – Strategic Considerations

- What <u>value creation proposition</u> is there?
 - Decentralized vs. Centralized Computing?
 - Native Token filling what Gaps in Fiat Currency system?
- What are <u>competitors</u> (Traditional & Blockchain) doing?
- Why use append only ledgers, multiple party consensus and native token?
- What verification or networking costs can actually be reduced?

Assessing Use Cases – Tactical Considerations

- Which data needs recording on append-only ledgers?
- Which <u>multiple stakeholders</u> need 'write' access to the shared ledger?
- What are the <u>tradeoffs</u> of performance, privacy, security, governance & regulation?
- How can broad <u>adoption</u> and user interface be realized?
- If permissionless, what are the token incentive systems?

Assessing Use Cases – Deeper dive

- Why use <u>multiple party shared ledger</u>?
 - Why choose a distributed ledger solution over a centralized one?
 - Why not rely on a third-party authority or host?
 - Is the value proposition well distributed amongst all parties?
 - What is the <u>adoption</u> model?
- What specific <u>verification</u> or <u>networking costs</u> can be reduced?
 - Authentication? Traceability? Trust?
 - Are the transaction processes & data standardized?
 - How much data needs to be stored?

Incumbents' Choices of Databases

Access

Client Server

Traditional Databases

Trusted Party Hosts Data

Trusted Party can Create, Read, Update, & Delete (CRUD)

Client Server Architecture

Permissioned

Private Blockchain

Known Participants

Private Write Capability

Append Only Timestamped Log

Publicly Verifiable

No Native Currency Needed

Permissionless

Public Blockchain

Unknown Participants

No Central Intermediaries

Public Write Capability

Peer to Peer Transactions

Native Tokens & Incentives

Central Bank Initiatives

Real Time Gross Settlement

• Brazil, Canada (Project Jasper), Europe and Japan (Project Stella), Singapore (Project Ubin), South Africa (Project Khokha)

Digital Currency

- Central Bank Claim: Bahamas (Sand Dollar), Ecuador (Dinero Electrónico), Iran (Payman), Sweden (E-Krona)
- Commercial Bank Claim: Philippines (ePiso), Senegal (eCFA), Tunisia (e-Dinar)
- Possible Hybrid: China (Digital Currency Electronic Payment)
- Commodity Backed: U.K. (Royal Mint Gold), Venezuela (Petro)
- Other: Dubai emCash, Saudi & UAE (cross-border pilot), Uruguay (Digital Peso)

CBDC Potential Architectures

CBDC – Opportunities

- Continue Government Provision of a Means of Payment
- Promote Competition in Banking System
- Promote Financial Inclusion & P2P Payments
- Address Payment System 'Pain Points'
- For Some Nations, Possibly Avert Sanctions

CBDC - Challenges & Uncertainties

- Financial Stability and Potential to Increase Ease of Bank Runs
- Changes to Commercial Banks' Deposits and Funding Models
- Effects on Credit Allocation and Economy
- Monetary Policy Implementation & Transmission
- Resilience of Open Payment Infrastructures

Ground Truths

- Nakamoto solved the payments riddle avoiding double spending
- Money is but a social & economic construct
- We already live in an age of digital money
- Append-only logs & multiparty consensus provides a peer-2-peer alternative
- Blockchain technology can address verification and networking costs
- Adoption rests on addressing comparative viability & value proposition

Ground Truths

- Crypto markets are rife with scams, fraud, hacks & manipulation
- Cryptocurrencies have evolved into a speculative asset class
- Crowdfunding built on smart contracts & ICOs raised nearly \$30 billion
- Lightly & non regulated markets provide retail investors direct way to trade
- The potential, though, to be a catalyst for change is real

MIT OpenCourseWare https://ocw.mit.edu/

15.S08 FinTech: Shaping the Financial World Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.