Seeing the Big Picture Segmenting Images to Create Data

15.071x – The Analytics Edge

Image Segmentation

- Divide up digital images to salient regions/clusters corresponding to individual surfaces, objects, or natural parts of objects
- Clusters should be uniform and homogenous with respect to certain characteristics (color, intensity, texture)
- <u>Goal:</u> Useful and analyzable image representation

Wide Applications

- Medical Imaging
 - Locate tissue classes, organs, pathologies and tumors
 - Measure tissue/tumor volume
- Object Detection
 - Detect facial features in photos
 - Detect pedestrians in footages of surveillance videos
- Recognition tasks
 - Fingerprint/Iris recognition

Various Methods

- Clustering methods
 - Partition image to clusters based on differences in pixel colors, intensity or texture
- Edge detection
 - Based on the detection of discontinuity, such as an abrupt change in the gray level in gray-scale images
- Region-growing methods
 - Divides image into regions, then sequentially merges sufficiently similar regions

In this Recitation...

- Review hierarchical and *k*-means clustering in R
- Restrict ourselves to gray-scale images
 - Simple example of a flower image (flower.csv)
 - Medical imaging application with examples of transverse MRI images of the brain (healthy.csv and tumor.csv)
- Compare the use, pros and cons of all analytics methods we have seen so far

Grayscale Images

- Image is represented as a matrix of pixel intensity values ranging from 0 (black) to 1 (white)
- For 8 bits/pixel (bpp), 256 color levels

Grayscale Image Segmentation

• Cluster pixels according to their intensity values

Dendrogram Example

Dendrogram Example

Dendrogram Example

Flower Dendrogram

Cluster Dendrogram

15.071x – Predictive Diagnosis: Discovering Patterns for Disease Detection 10

• The *k*-means clustering aims at partitioning the data into *k* clusters in which each data point belongs to the cluster whose mean is the nearest

- 1. Specify desired number of clusters k
- 2. Randomly assign each data point to a cluster
- 3. Compute cluster centroids
- 4. Re-assign each point to the closest cluster centroid
- 5. Re-compute cluster centroids
- 6. Repeat 4 and 5 until no improvement is made

k-Means Clustering Algorithm

 Specify desired number of clusters k

- Specify desired number of clusters k
- 2. Randomly assign each data point to a cluster

- Specify desired number of clusters k
- 2. Randomly assign each data point to a cluster

- Specify desired number of clusters k
- 2. Randomly assign each data point to a cluster

- Specify desired number of clusters k
- 2. Randomly assign each data point to a cluster
- 3. Compute cluster centroids
- 4. Re-assign each point to the closest cluster centroid

- Specify desired number of clusters k
- 2. Randomly assign each data point to a cluster
- 3. Compute cluster centroids
- 4. Re-assign each point to the closest cluster centroid

k-Means Clustering Algorithm

- Specify desired number of clusters k
- 2. Randomly assign each data point to a cluster
- 3. Compute cluster centroids
- 4. Re-assign each point to the closest cluster centroid
- 5. Re-compute cluster centroids
- 6. Repeat 4 and 5 until no improvement is made

k = 2

First Taste of a Fascinating Field

- MRI image segmentation is subject of ongoing research
- k-means is a good starting point, but not enough
 - Advanced clustering techniques such as the modified fuzzy k-means (MFCM) clustering technique
 - Packages in R specialized for medical image analysis <u>http://cran.r-project.org/web/views/MedicalImaging.html</u>

3D Reconstruction

MRI image removed due to copyright restrictions.

- 3D reconstruction from 2D cross sectional MRI images
- Important in the medical field for diagnosis, surgical planning and biological research

Comparison of Methods

	Used For	P	ros	C	ons
Linear Regression	Predicting a continuous outcome (salary, price, number of votes, etc.)	•	Simple, well recognized Works on small and large datasets	•	Assumes a linear relationship $Y = a \log(X) + b$
Logistic Regression	Predicting a categorical outcome (Yes/No, Sell/ Buy, Accept/Reject, etc.)	•	Computes probabilities that can be used to assess confidence of the prediction	•	Assumes a linear relationship

Comparison of Methods

	Used For	Pros	Cons
CART	Predicting a categorical outcome (quality rating 15, Buy/Sell/Hold) or a continuous outcome (salary, price, etc.)	 Can handle datasets without a linear relationship Easy to explain and interpret 	• May not work well with small datasets
Random Forests	Same as CART	• Can improve accuracy over CART	 Many parameters to adjust Not as easy to explain as CART

Comparison of Methods

	Used For	Pros	Cons
Hierarchical Clustering	 Finding similar groups Clustering into smaller groups and applying predictive methods on groups 	 No need to select number of clusters a priori Visualize with a dendrogram 	• Hard to use with large datasets
k-means Clustering	Same as Hierarchical Clustering	• Works with any dataset size	• Need to select number of clusters before algorithm

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

15.071 Analytics Edge Spring 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.