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Reputation in Repeated Games

Previous 4 lectures considered repeated game models of
cooperation: when and how the prospect of future
rewards/punishments motivates non-static Nash behavior.

I Simplest model has multiple long-run players + complete info.

Next 2 lectures consider repeated game models of reputation
formation: when and how the desire to signal something about
your type drives dynamic behavior.

I Simplest model has 1 long-run player facing series of short-run
opponents + incomplete info about LR player’s types.

I The LR player’s reputation at a given history is her
opponents’belief about her type.



Reputation in Repeated Games (cntd.)
Formally, reputation models are a special class of repeated games
with incomplete information.

In general, repeated games with incomplete info can be
complicated, because there are many different kinds of strategic
consideration: signaling, revealing/concealing information, learning
and experimentation, etc..

I Successful analysis tends focuses on one issue at a time.

“Reputation model”generally means (albeit with exceptions):

I Only one player with private info.
I The private info is whether the player is rational (maximize
expected discounted utility) or a commitment type (who
takes a fixed strategy, i.e. has a strictly dominant repeated
game strategy).

I The player with private info is a long-run player with δ→ 1,
facing a series of short-run opponents.



Why Study Reputation in Repeated Games?

While reputation models are “special” in various ways, they’re
important for a couple reasons.

1. Useful for studying long-run implications of signaling in
applications.

I How do firms build reputations for providing high quality?
I When do firms with good reputations maintain them vs. run
them down?

I How do brand names or labels indicate reputation?
I When/how does desire for a good reputation lead to perverse
“pandering”-type incentives?



Why Study Reputation in Repeated Games? (cntd.)

2. Reputation models give sharp results on equilibrium selection
in repeated/dynamic games.

We’ve seen that complete info models often yield a folk theorem.

In contrast, reputation models often make sharp payoff predictions.

Two leading examples of this are:

I The Stackelberg payoff theorem: in canonical LR-SR
reputation models, the LR player gets her Stackelberg payoff
as δ→ 1. Idea: if LR player always takes the Stackelberg
action, SR players eventually come to expect this, and hence
best respond. (Today’s lecture.)

I The reputational Coase conjecture: in bilateral bargaining
with one possibly tough bargainer, that player does as well as
if known to be tough for sure. (Next week.)



Plan

1. Early reputation results (KWMR 82, FM 86).

2. The Stackelberg payoff theorem and extensions (FL 89, 92,
Gossner 11)

3. Long-run implications of reputation
(Cripps-Mailath-Samuelson 04)

4. Extensions (interdependent values, long-run “audience,”
multiple reputation-builders)

Next lecture: reputation effects in markets, covering both “good
reputation” (Holmström 82, Mailath-Samuelson 01,
Board-Meyer-ter-Ven 11) and “bad reputation” (Ely-Valimäki 03,
Ely-Fudenberg-Levine 08).



The Chain Store Paradox
Start with a canonical example (and inspiration for seminal papers
of Kreps-Wilson-Milgrom-Roberts 82): the chain store game.

I A LR player (“incumbent”) faces a series of T SR players
(“entrants”).

I In each period t, the current entrant chooses Enter or Stay
Out. If enters, the incumbent chooses Fight or Accommodate.
These decisions are observed by future entrants.

I Stage game payoffs are

Enter Stay Out
Fight −1,−1 a, 0

Accomodate 0, b a, 0
(a, b > 0)

I Incumbent maximizes undiscounted sum of payoffs.
I Assume a > 1, so incumbent willing to fight in period t to
deter entry in period t + 1.



Chain Store Paradox (cntd.)
With complete info, by backward induction the game has a unique
SPE: all entrants always enter, and incumbent always
accommodates.

I This is the classic chain store paradox (Selten 78).

It’s called a paradox because it seems unreasonable. If T = 1000
and the first 100 entrants entered and got fought, what should
entrant 101 do? (The backward induction prediction just got
rejected 100 times over. . . )

KWMR propose a natural resolution (anticipated by Nash):
Suppose that with small prob µ0 > 0 (“initial reputation”), the
incumbent is a “tough type” that always fights.

I For any µ0 > 0, not a SE for play to procede as in the
complete info game when incumbent is rational, because
playing Fight in period 1 would jump posterior reputation µ
up to 1 and deter all future entry. So what happens instead?



The Gang of Four Theorem

Theorem
For any µ0 > 0, there is a number T

∗, independent of T , s.t. in
any SE the entrants stay out until the last T ∗ periods. Hence, as
T → ∞, the incumbent’s average payoff conveges to a.

I The discontinuity at µ0 resolves the chain store paradox.
I Proof proceeds by backward induction, uniquely characterizing
eqm behavior in each period t as a function of the
incumbent’s reputation at the beginning of the period µt .

I Shows that there exists a number π ∈ (0, 1) (independent of
T ) s.t. entrant stays out in period t (and incumbent fights in
period t with prob 1 if entrant enters) if µt > πT−t .

I When µ0 > πT , this implies that entrants stay out in “early
periods,” and hence reputation remains at µ0.

I “Early periods” last until final log µ0/ logπ periods, which is
a constant independent of T .



Remarks
KWMR also showed that that the same idea resolves other
paradoxes of backward induction.
I In the finitely repeated PD, players cooperate until the last
few periods, if there is a small prob that each player is
committed to Tit-for-Tat.

I In the centipede game, players Pass until the last few periods,
if there is a small prob that each player is committed to
Always Pass.

It’s natural that players think opponents could have very different
preferences/strategies with small prob. However, an apparent
limitation of KWMR is prior-dependence: the prediction seems to
depend on the particular commitment type we threw in.
I E.g. a small chance the incumbent is committed to Always
Accommodate doesn’t change anything.

I This point is made more generally by FM 86’s “folk theorem
with incomplete information” (albeit for simultaneous-move
games with all LR players).



FM 86
Theorem
Fix a (simultaneous-move) stage game and a static NE payoff
vector v . For any ε > 0 and any payoff vector v ′ > v, there exists
T̄ such that, for any T > T̄ , there exists a strategy si for each
player i in the T-period finitely repeated game where each player i
is rational with prob 1− ε and is committed to si with prob ε s.t.
there is a SE where average payoffs are within ε of v ′.

I Let si be the “trigger strategy” that targets v ′, switches to
static NE after any deviation.

I Suppose rational players also play si until the last T̄ periods,
for some fixed large T̄ .

I Then deviating from si before the last T̄ periods is
unprofitable, as if deviate get continuation payoff vi , if
conform get continuation payoff at least
εN−1v ′i +

(
1− εN−1

)
vi .

I And deviations in the last T̄ periods have little effect on
average payoffs.



Toward the Stackelberg Payoff Theorem

FM 86 shows that if tailor commitment type to target payoff, can
attain a wide range of payoffs.

I Does this preclude a robust reputation result?
I Not if the “tailored” type spaces are themselves special, and
we actually get sharp predictions for “most” type spaces: e.g.,
those with a wide range of commitment types.

I But, a challenge: how to characterize equilibria with many
commitment types?



Toward the Stackelberg Payoff Theorem (cntd.)

A key of insight of FL 89, 92: Don’t exactly characterize eqm
strategies, instead find bounds on eqm payoffs.

While eqm strategies may be prior-dependent, we’ll see that in
LR-SR game as δ→ 1 can often make sharp, prior-independent
payoff predictions.

Idea: if LR player always takes the Stackelberg action, SR players
eventually come to expect this, and hence best respond.

I This logic works even if the prior puts weight on many
commitment types, so long as it includes the Stackelberg
commitment type.

I The Stackelberg type is thus canonical.



Reputation with Perfect Monitoring (FL 89)
A LR player (player 1) with discount factor δ faces an infinite
sequence of SR opponents (player 2’s). Finite stage game (A, u).

LR player’s type drawn from prior µ that can put weight on the
rational type of player 1 and also commitment types θa1 for each
a1 ∈ A1. Commitment type θa1 always takes a1.

The Stackelberg action a∗1 is the pure action player 1 would most
like to publicly commit herself to, assuming player 2 takes his worst
best response:

a∗1 ∈ argmax
a1

min
a2∈BR2(a1)

u1 (a1, a2) .

Let u∗1 = mina2∈BR2(a∗1) u1 (a
∗
1 , a2).

I E.g., in the chain store game, a∗1 = Fight, u
∗
1 = a.

Theorem
Fix any prior µ s.t. µ

(
θa∗1
)
> 0. For all ε > 0, there exists δ̄ < 1

such that if δ > δ̄ then in any NE rational player 1’s payoff is at
least u∗1 − ε.



Intuition

Suppose player 1 always takes a∗1 .

I If in some period t player 2 puts low prob on a∗1 being played,
then if a∗1 is played, by Bayes’rule player 1’s reputation
(=µt

(
θa∗1 |h

t
)
) jumps up by a multiple bounded away from 1.

I µt
(
θa∗1
)
is bounded by 1, so it can only jump up finitely many

times (indep of δ).
I So, can be only finitely many periods where player 2 puts low
prob on a∗1 . These are the only periods where player 2 can fail
to best respond to a∗1 .

I So player 1 gets at least u∗1 − ε.

Since player 1 gets at least u∗1 − ε if always takes a∗1 , must also get
at least this much in eqm.

I Does not imply that player 1 always takes a∗1 in every eqm.



Remarks
I Striking equilibrium selection result. The folk theorem says
“anything goes”as δ→ 1. Here, precise payoff prediction
when δ→ 1. Higher δ pins prediction down more precisely.

I Prior can put arbitrarily small weight on θa∗1 . There is an
order-of-limits issue between µ

(
θa∗1
)
and δ (for any δ, the

payoff bound vanishes as µ
(
θa∗1
)
→ 0), but the proof shows

that ε can be taken proportional to (1− δ) log µ
(
θa∗1
)
, so OK

for µ
(
θa∗1
)
to be much smaller than 1− δ.

I Prior can also put weight on other commitment types.
I Theorem holds for any Nash eqm. (Actually, holds whenever
SR players take a best response to some strategy for rational
LR player, and rational LR player takes a best response to
that. That is, 2 rounds of deletion suffi ces. See Watson 93,
Battigalli-Watson 97.)

I Always taking a∗1 does not necessarily convince SR players
that LR player is committed to a∗1 . Just convinces them that
she will play a∗1 . This is enough to guarantee payoff u

∗
1 .



Proof
Lemma
In any NE, for any q < 1, along a history where LR always takes
a∗1 , there are at most log µ0

(
θa∗1
)

/ log q periods where
Pr (a∗1 |ht ) < q.
I By Bayes’rule,

µt+1
(
θa∗1 |h

t , a∗1
)
=

µt
(
θa∗1 |h

t
)

Pr (a∗1 |ht )
.

I So, when LR always takes a∗1 , the sequence
(
µt
(
θa∗1 |h

t
))
t
is

non-decreasing, and it increases by a multiple of at least 1/q
whenever Pr (a∗1 |ht ) < q.

I Since µt
(
θa∗1 |h

t
)
≤ 1, the number of periods with

Pr (a∗1 |ht ) < q can’t exceed any T s.t.

µ0
(
θa∗1
)

qT
≥ 1, or T ≤

log µ0
(
θa∗1
)

log q
.



Proof (cntd.)

Since A2 is finite, ∃q < 1 s.t. every best response when
Pr (a∗1 |ht ) ≥ q is a best response to a∗1 .

So, if LR always takes a∗1 , there are at most
K := log µ0

(
θa∗1
)

/ log (q) periods where SR does not take a best
response.

I Hence, LR gets at least u∗1 in all but at most K periods.
I LR’s payoff from Always a∗1 is as least(

1− δK+1
)
u1 + δK+1u∗1 .

I This → u∗1 as δ→ 1.
I Hence, LR’s eqm payoff must also → u∗1 as δ→ 1.



Reputation with Imperfect Monitoring (FL 92)

Now suppose LR player’s action is imperfectly observed: SR players
observe y ∼ p (·|a1).

This more general model also covers commitment to mixed actions
(as the realized action is a signal of the mixed action) and
extensive-form stage games (as the realized outcome is a signal of
the stage-game strategy).

To cover extensive-form stage games, we won’t assume LR player’s
action is identified.

Instead, define a generalization of the best response
correspondence, which allows SR players to have incorrect beliefs
about LR player’s play at unreached subgames.



Epsilon-Confirmed Best Responses

Definition
α2 ∈ ∆ (A2) is an ε-confirmed best response to α1 ∈ ∆ (A1) if
it’s not weakly dominated and there exists α′1 s.t.

1. α2 ∈ argmaxα̂2
u2 (α′1, α̂2).

2. |p (y |α1, α2)− p (y |α′1, α2)| < ε ∀y .

Intuitively, “ε-confirmed BR to α1”means BR to some action
that’s almost indistinguishable from α1.

Let BR ε
2 (α1) denote the set of ε-confirmed best responses to α1.



Stackelberg Payoff Theorem

Theorem
Fix any prior µ and any α1 ∈ ∆ (A1) s.t. µ (θα1) > 0. For all
ε > 0, there exists δ̄ < 1 such that if δ > δ̄ then in any NE
rational player 1’s payoff is at least

min
α2∈BR ε

2(α1)
u1 (α1, α2)− ε.

Intuition: if LR always takes α∗1, with high prob there are only
finitely many periods where SR expects signals far from those
under α∗1; so SR almost always best responds to a strategy that
generates signals close to those under α∗1.



Proof Approaches
FL 92 prove this using martingale techniques.

I If LR always takes α∗1, µt
(
θα∗1 |h

t
)
no longer goes up

deterministically, but it’s a submartingale.
I Can use martingale arguments to show that for any q < 1,
there exists K independent of δ s.t. with high prob
Pr ({α1 : ‖p (·|α1, α2 (ht ))− p (·|α∗1, α2 (ht ))‖ < ε} |ht ) < q
for at most K periods.

I Sorin 99 gives a shorter proof using results on “merging”of
Bayesian posteriors. (See MS Ch. 15.4.)

Gossner 11 gives similar (in some cases stronger) results with short
proofs using entropy methods.

I Idea is to bound SR players’“expected prediction errors”over
T periods.

FL, Sorin, and Gossner use different probabilistic methods to
formalize similar basic idea.



Reputation in the Long Run
The Stackelberg payoff theorem concerns players’expected payoffs
from the beginning of the game.

In some settings, we might also be interested in long-run (t → ∞)
behavior.
I Average welfare of all SR players (or long-run welfare in
overlapping generations models more generally).

I Steady state predictions (especially in models without a
well-defined start date).

At first one might think that if LR player gets average payoff→ u∗1
as δ→ 1, must get long-run payoff close to u∗1 .

But this confuses the order of limits: average payoff is determined
by first O (1/ (1− δ)) periods, so for any δ long-run payoffs could
be far from u∗1 .
I Somewhat surprisingly, under some conditions this is actually
what happens.



Cripps-Mailath-Samuelson 04

LR vs. SR model with imperfect monitoring. Assumptions:

I Full support: p (y |a1) > 0 ∀y , a1.
I Player 1’s action is identified: ∀α2,

α1 6= α′1 =⇒ p (·|α1, α2) 6= p (·|α′1, α2).
I Countable set of commitment types. Player 2 has a unique
BR to each commitment type’s action.

Theorem
Let Θ̂ be the set of types θa1 s.t. (a1,BR2 (a1)) is not a static NE.
In any NE, when LR is rational, limt→∞ µ

(
Θ̂|ht

)
= 0 almost

surely.

I FL: LR payoff→ u∗ as δ→ 1.
CMS: for any δ, LR reputation→ 0 as t → ∞.



Intuition

I Suppose LR takes a∗1 for a long time, so SR expects a
∗
1 for a

long time with high prob.
I Due to full support, eventually SR will continue to expect a∗1
for a long time regardless of current-period signal.

I Since (a∗1 ,BR2 (a
∗
1)) is not a static NE, LR will deviate at

such a history.
I Thus, while LR can guarantee a payoff close u∗ by always
taking a∗1 (by FL), she does even better by occasionally
deviating from a∗1 .

I These deviations may be infrequent, but they occur infinitely
often.

I Repeated deviations eventually run down LR’s reputation.



Recovering Permanent Reputation

The CMS “impermanent reputation” result is a bit surprising,
because we do seem to see reputation effects even in interactions
that have been going on for a long time.

The literature has considered a couple ways of recovering long-run
reputation effects.

1. Changing types. Ekmekci-Gossner-Wilson 12 show that with a
constant, iid prob ρ that LR’s type is redrawn from the prior, LR’s
expected payoff starting at any on-path history obeys the same
bound as the ex ante payoff with initial reputation ρµ (θa∗).

I This bound goes to 0 as ρ→ 0 but convergence is very slow
in ρ, since the payoff bound is approximately
u∗1 − (1− δ) log (ρµ (θa∗)). So even a small prob of type
changes restores long-run reputation.



Recovering Permanent Reputation
2. Bounded memory. Long-run reputation effects also arise if it’s
the SR players’information that turns over, rather than the LR
player’s type. Liu-Skrzypacz 14 consider a model along these lines.

I Consider a class of “trust games”where SR chooses how
much to trust LR, LR chooses how much to exploit SR.
Assume LR’s gain from exploiting is greater when SR is more
trusting. Stackelberg action is don’t exploit.

I In eqm, LR either doesn’t exploit or exploits maximally. SR’s
level of trust depends only on number of periods since the
most recent exploitation, increasing gradually over time to
keep LR indifferent.

I At “clean”histories where LR has not exploited in the last K
periods, LR always exploits.

I Thus, get a theory of infinitely recurring reputation cycles.
I (Earlier papers by Sobel 85, Benabou-Laroque 92 had
somewhat similar dynamics.)



Extensions of the Baseline Reputation Model

There are many. We’ll discuss a few:

1. Interdependent values: SR directly cares about LR’s type, not
just her action.

2. Long-run player 2 (with known type).

3. Two LR reputation builders.



Interdependent Values (Pei 20)
Suppose there are multiple rational types θ (in addition to
commitment types), and SR’s best response BR2 (α1, θ) depends
on both α1 and θ. (Assume it’s single-valued.)
I E.g., SR players want to eat at LR player’s restaurant iff LR
player is both a good cook (high θ) and works hard (high a1).
(“Product choice game with unknown quality.”)

Natural definition of Stackelberg payoff for rational type θ here is

u∗1 (θ) = maxα1
u1 (α1,BR2 (α1, θ) ; θ) .

Question: When is each rational type θ guaranteed a payoff close
to u∗1 (θ) in every NE when δ→ 1?

Challenge: If type θ takes a1 repeatedly, this does convince SR
that she’ll keep taking a1, just like in FL 89. However, it need not
convince SR that LR’s type is θ, and inducing BR2

(
α1, θ

′) for
θ′ 6= θ may be bad for type θ. There might be a tradeoff between
establishing a reputation for taking a1 and signaling favorable
information about θ.



Interdependent Values (cntd.)

Pei shows that, in general, rational types are not guaranteed a
payoff close to u∗1 (θ) in every NE as δ→ 1.

However, this does hold if |A2| = 2 and the game is
“monotone-supermodular”: u1 is decreasing in a1 and increasing in
a2; u1 has strictly increasing differences in θ and (a1, a2); u2 has
strictly increasing differences in a2 and (θ, a1).

Intuition: for this class of games, higher LR actions convince SR
both that θ is high and that LR will keep taking higher actions.

For example, these conditions are satisfied in the product choice
game with unknown quality.



Long-Run Player 2
What happens if the “audience” for reputation-building is a LR
player instead of a series of SR players?

I E.g., worker trying to prove herself to the market (myopic
“SR”player, which sets wage=productivity each period) vs. a
boss (strategic LR player).

If players 1 and 2 are equally patient, there’s a profound problem:
# of times P1 is willing to take a∗1 to convince P2 to BR is
proportional to how convinced P2 must become before he must
start taking a BR. (More on this in a moment.)

More promising case (also closer to the baseline model): P2 is
patient, but P1 is much more patient.

Formally, is the iterated limited payoff limδ2→1 limδ1→1 u1 always
close to the Stackelberg payoff u∗1?

I This is sometimes called the “long-run/medium-run model.”



Long-Run Player 2 (cntd.)
Turns out that there is also a challenge here:

I If P1 takes a∗1 repeatedly, this eventually convinces P2 that she
will keep taking a∗1 for a long time with high prob on path,
i.e., with respect to the eqm prob dist. (Just like in FL 89.)

I However, if P2 is not taking a BR in eqm, this does not
convince P2 that P1 will keep taking a∗1 if P2 switches to
taking a BR.

I (This is what would happen if P1 were the Stackelberg type.
But P1 can only convince P2 that she will take the
Stackelberg action.)

I E.g., P2 can suspect that P1 is playing the strategy “Take a∗1
until P2 takes a BR, then switch to minmaxing P2.”Then P2
should not BR, no matter how many times P1 takes a∗1 .

For this reason, FL 89 theorem does not hold in the
long-run/medium-run case.



Long-Run Player 2 (cntd.)
However, there are several variations of the model that do yield
reputation effects in the long-run/medium-run case.

1. P1 can guarantee the “minmaxing Stackelberg payoff”

max
a1 :u2(a1,BR2(a1))=u2

min
a2∈BR2(a1)

u1 (a1, a2) ,

because if a1 already minmaxes P2, P2 has nothing to fear from a
switch and so will BR. (Schmidt 93, extended by
Cripps-Schmidt-Thomas 96)

2. P1 can guarantee the Stackelberg payoff u∗1 under full-support
public monitoring. Intuitively, full support noise blurs the
distinction between on-path and off-path histories, so P2 learns
P1’s strategy, not just her on-path action. More precisely, divide
the game into T -period blocks. If P1 repeatedly plays the same
T -period repeated game strategy, P2 eventually learns this
strategy and best responds (if it has positive ex ante prob).
(Aoyagi 96, Celentani-Fudenberg-Levine-Pesendorfer 96)



Long-Run Player 2 (cntd.)

3. If P1 could be a commitment type that punishes P2 for not
taking a BR, then eventually P2 should BR when P1 plays like this
type. (Evans-Thomas 97)



Two LR Reputation-Builders
Finally, consider “symmetric” situations where players are equally
patient and there’s incomplete info on both sides.

Typically, the players’desired commitments conflict, so it’s
impossible for each to get her Stackelberg payoff. E.g., this
happens in the battle-of-the-sexes:

B O
B 2, 1 0, 0
O 0, 0 1, 2

Each player’s Stackelberg payoff is 2, but they can’t both get 2.
I A natural guess is that in this type of game, eqm play will
resemble a war of attrition, where both players try to establish
a reputation, and eventually one of them admits that they’re
rational and best responds.

I Next week, we’ll see that this is what happens in
“reputational bargaining”models, which are related to the
battle-of-the-sexes with 2-sided reputation.



2-Sided Reputation (cntd.)
However, it turns out that with 2 LR players, the Stackelberg
payoff theorem can fail even when the players’desired
commitments agree!

Consider
B O

B 1, 1 0, 0
O 0, 0 0, 0

where each player is committed to B with prob µ, rational
otherwise.

We might think that by repeatedly taking B they can force
coordination on B.

But:

Theorem (Cripps-Thomas 97)
For any ε > 0, there exist µ̄ > 0 and δ̄ < 1 s.t., for all µ < µ̄ and
δ > δ̄, there exists a SE where both players’payoffs are less than ε.



2-Sided Reputation (cntd.)

Problem: # times P1 is willing to take a∗1 to convince P2 to BR is
proportional to how convinced P2 must become before he must
start taking a BR.

We would get a reputation result here in the long-run/medium-run
case, or with full-support imperfect monitoring (Cripps-Faingold
14), or if the players’strategies have bounded recall
(Aumann-Sorin 89).

In general, games with 2 LR reputation-builders are subtle and not
well-understood.

I Atakan-Ekmekci 12, 15 give conditions under which one LR
reputation-builder can secure Stackelberg payoff against an
equally patient LR opponent.

I Best-studied class of games with 2 LR reputation-builders is
reputational bargaining, which we’ll cover next week.
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