
    

         

            
               

            
           

 
              

         

14.771 Problem Set 1 

1 Gender Bias in Investment in Children: Theory and Regressions 

Two classical related questions economists have asked are (i) whether parents have gen-
der preferences in fertility, and (ii) whether parents invest more in boys than in girls 
(e.g., Pande and Astone (2007), Jayachandran and Kuziemko (2011)). In this section, 
we will have a brief discussion of this classic issue in development. 

Exercise 1 
Assume that families have one child, and they have to make a one-time investment 

in the children’s education. The parent’s utility is given by 

β u(h, c) = hα c (1) 

with budget-constraint 
ph + c ≤ I (2) 

where h is human capital, c is consumption, p > 0 is the unitary price of human capital, 
consumption’s price is normalized to 1, and I > 0 is the family’s income. The parameters 
α and β captures the parent’s preferences towards investment in children’s human capital 
and family’s consumption. 

1. What is the human capital investment chosen by a family maximising (1) subject 
to (2)? 

2. Assume now that the price of human capital may differ by gender, where pG is 
the price for girls and pB for boys. Cite two reasons why the price of education 
for boys and girls might differ (max. 3 lines per reason) (tip: you can define price 
broadly, not only school tuition, for example). 

3. Suppose that in equilibrium, the investment for a girl is smaller than the investment 
for a boy in a given family. Under this model, is this irrefutable evidence of parental 
gender preferences regarding their children education? Explain your answer in at 
most 3 lines. 

4. Assume families have exactly two children, that their utility is given by u(h1, h2, c) = 
hα β 
1 h

α 
2 c , and that the budget constraint is ph1 + ph2 + c ≤ I. Will the average 

investment in human capital per child fall in comparison to the family with a single 
child? 

Exercise 2 
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Suppose in a society each family has a single child. You have access to a cross-section 
with information on each child’s gender (dummy Mi, equal to 1 if male), and yi, the 
child’s education level. Answer the following questions, with maximum 3-4 sentences 
each. 

1. (i) Write down which regression you would estimate to understand whether boys 
receive more parental investment, and (ii) the relationship between the independent 
variable and the error term necessary for identifying that this gap is investment is 
caused by gender. 

2. Provide two reasons why you might worry that this this relationship may not hold 
in the setting described above. 

3. Assume the equation you wrote on the item above indeed capture differences in 
parental investment caused by the child’s gender. Can you interpret your results 
as a clear evidence of parental preferences towards a gender or another? What if 
you knew that pG = pB? 

4. Even in the context of RCTs, researchers often control for covariates even when 
they are convinced the randomization worked. Why can this be a good idea? 

5. Assume you observe a variable capturing the number of months the child was 
breastfed, which you verify to be positively correlated with the child’s level of 
education. Do you think it is a good idea to control for this variable? 

2 Big Push Graduation Program: Designing and Analysing RCTs 

This section asks you to think about methodological issues in RCTs in the context of 
Banerjee et al. (2015). This paper will be covered in class on September 15, but – 
because the questions are primarily methodological – most of the questions can be an-
swered prior to this. 

Exercise 3 (max 3 sentences per question) 

1. In three of the six countries, the authors used a two-step randomisation process: 
they first randomised villages into either treatment or control, and then within 
treatment villages they randomised households into either treated or untreated. 
This means there are three separate groups: (i) treated households in treatment 
villages, (ii) untreated households in treatment villages, (iii) control households in 
control villages. How does this design allow them to measure spillovers within a 
village? Be precise about which groups will be compared to which. 

2. Are there any drawbacks to using this kind of design? 
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Exercise 4 
Please download the dataset, ps1 data.csv, constructed from Banerjee et al. (2015). 

It consists of the consumption outcome variable for the three countries in which there 
was two-stage randomisation. 

1. For now, we will ignore the control household in treated villages, and just focus 
on comparing treated households in treated villages to households in control vil-
lages. Write out an estimating equation to estimate the effect of being assigned to 
treatment on the consumption index. 

2. Using the data, run the corresponding regression. Report and interpret the results. 

3. Now, run a regression that yields a coefficient that can be interpreted as the 
strength of spillovers. Do you find evidence of important spillover effects? 

Exercise 5 
In this exercise, we will pay close attention to the meaning of standard errors and 

what are the “correct” standard errors to use in this setting. For the sake of simplicity, 
we will again ignore the untreated households in treatment villages – you can drop them 
from the dataset. 

1. Describe what a standard error is and why we care about it (max 3 sentences). 

2. A common rationale for why we need standard errors is that we observe only a 
finite sample of observations from a very large population, and we are trying to 
learn about a parameter (here, a treatment effect) for the entire population. Some-
times, we compute standard errors using analytical formulas (think of the typical 
“robust” or “clustered” standard errors). 

A different approach is to use the bootstrap. The bootstrap calculates standard 
errors by leveraging the above intuition for why we need standard errors, by re-
peatedly re-sampling “bootstrap” sub-samples from our main sample (treating it 
as a population). We then re-run the regression on each one, and observe the dis-
tribution of the estimated treatment effects. If the distribution has high variance, 
then this suggests that the process of sampling from a larger population involves 
considerable randomness and thus our standard errors should be large. 

We would like you to implement the bootstrap and plot the distribution of treat-
ment effects. In particular, please do this through the following steps: 

(a) Define the number of villages in the dataset as N . 

(b) Create a new dataset by randomly drawing, with replacement, N of these 
villages. This is our bootstrap sub-sample, b. 

(c) Regress the consumption index on treatment. Call the coefficient βb. 
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(d) Repeats Steps (b) – (c) a total of B times, for B = 800. 

(e) Plot a histogram (or density plot) of {βb}b=1,2,. . . ,B and report the standard 
deviation, which serves as an estimate for the standard error.1 

(f) Compare this estimate to the typical “robust” (Eicker-Huber-White) stan-
dard error, obtained from regressing the consumption index on treatment in 
the original dataset (still dropping the untreated households in treatment vil-
lages). Do you have any intuition for why they might be different? Which (if 
any) rejects the null? 

3. Now, re-run the same regression, but with standard errors clustered at the village 
level. Compare this standard error to the bootstrapped one. 

4. It seems that the robust and clustered standard errors are meaningfully different. 
Sometimes, people suggest that you should use the clustered standard errors be-
cause outcomes are correlated within a cluster, and we need to account for that. 
However, that rationale alone makes it hard to see why we should cluster at the vil-
lage level and not, for example, at the country level or perhaps at an industry level. 

One way to work out which approach is appropriate is to run a Monte Carlo exer-
cise. We will simulate fake data in which the true treatment effect is zero, where 
a researcher analyses a randomised experiment that looks just like Banerjee et al. 
(2015). We will do this a large number of times, and see how often we (falsely) 
reject the null hypothesis of zero treatment effect at the 5% level using the different 
ways of computing standard errors. Whichever method is “correct” should reject 
the null about 5% of the time. 

In particular, please implement this with the following steps: 

(a) Create G = 50 villages and randomly assign half to treatment. 

(b) Create a village-level “shock” variable, εv ∼ N(0, 3). 

(c) For each village, create N = 100 households. 

(d) Create a household-level “shock” variable, εh ∼ N(0, 3). 

(e) Let the outcome variable we are interested in be given by y = εv + εh (note 
that this implies that the treatment effect is zero). 

(f) Regress y on treatment using robust and clustered standard errors. Save the 
coefficient, and the two different standard errors. Call these [βr, SE1r, SE2r]. 

(g) Repeat (a)-(f) a total of R = 800 times. Make sure you change the seed. 

(h) For each type of SE, compute and report the share of simulations that rejected 
the null hypothesis of zero treatment effect (i.e., |βr| > 1.96 · SEr). Which 
one do you conclude is appropriate for our setting? 

1This is sometimes referred to as the “pairs bootstrap-se” or “pairs bootstrap-c” method, because 
we resample the (y, T ) as a pair, calculate the coefficient, and use these to obtain the standard error. 
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(i) Finally, re-run this Monte Carlo exercise, but assign treatment at the individ-
ual level instead (rather than assigning whole villages to treatment). What 
do you find? Given that nothing has changed about the data generating 
process, what does this imply about the often-suggested rationale for clus-
tering (i.e., that we need to cluster when there is correlation in the outcome 
variable within clusters)? For more on this, see Abadie, Athey, Imbens, and 
Wooldridge (2017). 

5. Like most analytical standard errors, the “clustered” standard error estimator is 
only asymptotically valid, so when we use it in finite samples we justify it as 
an approximation. Moreover, it converges as G, the number of clusters, goes to 
infinity. This means that the asymptotic approximation may be poor if there are 
few clusters (even if there are very many observations within each cluster!). 

As a potential solution to this, researchers have pointed out that the bootstrap may 
perform better if G is small. This final question explores this. We will repeat the 
exercise of 5.4, but this time we will also calculate bootstrapped standard errors. 
We will make three changes to 5.4: (i) set G = 10, (ii) set the variance of the 
village-level shock to 6, (iii) bootstrap the t-statistic rather than the coefficient. 
Bootstrapping the t-statistic is a little more complicated, but has the same basic 
intuition. You can do it in the following way, for each of the R = 800 simulated 
datasets. 

(a) Run a regression of y on treatment using clustered standard errors. Call the 
t-statistic w and the coefficient β. 

(b) Create a bootstrap sub-sample (just as you did in 5.2), and run the same 
regression (with clustered standard errors). Calculate the t-statistic as wb = 
(βb − β)/SEb. 

(c) Repeat (b) B = 400 times, and define the 2.5th and 97.5th percentiles of 
{wb}b as w[2.5] and w[97.5]. 

(d) Reject the null hypothesis if w < w[2.5] or w > w[97.5]. 

Again, report the share of simulations in which you (incorrectly) reject the null 
hypothesis of zero treatment effect. Compare this to the clustered standard errors. 
Which one achieves closer to the nominal 5% size? For more discussion on this, 
see Cameron, Gelbach, and Miller (2008). 

Hint: For 5.5, you might want to run this remotely on the MIT Econ servers. See 
the recitation slides for some guidance on how to do this. If you don’t have access, 
it is fine to do it locally (you can use smaller R or B if you like). 

Hint 2: In Stata, you can bootstrap the t-statistic with the command “bootstrap” 
(writing the expression in 5.5b), and the 2.5th and 97.5th percentiles of this ex-
pression will be stored in the matrix “e(ci percentile)”. 
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