Education: The Supply Side

Esther Duflo
14.771

The COVID-19 pandemic is a tsunami on the education system in developing countries

- Over 300 Million children have been affected by school closure
- In many countries they a re still to re-open, 128 Million learners still affected by end of September 2019
- Catastrophic impacton learning levels

Catrastrophic impacts on leaming level.

Table 7: \% Children by grade and arithmetic level All schools 2018

Std	Not even $1-9$	Recognize numbers		Subtract	Divide	Total
		$10-99$				
I	29.7	38.2	30.3	1.5		
II	10.9	24.5	54.7	9.3	0.6	100
III	4.9	13.9	54.9	23.3	3.0	100
IV	2.9	7.3	48.2	29.5	12.1	100
V	2.3	5.1	38.0	34.1	20.5	100
VI	2.4	3.3	34.7	30.0	29.6	100
VII	1.1	2.1	36.1	27.2	33.6	100
VIII	1.0	1.3	32.0	26.6	39.0	100

Table 8: \% Children by grade and arithmetic level All schools 2021

Std	Not even 1-9	Recognize numbers		Subtract	Divide	Total
		$10-99$				100
I	42.6	36.1	19.5	1.4		
II	22.5	35.0	36.7	5.0	0.8	100
III	10.7	24.7	47.3	15.7	1.6	100
IV	7.1	15.0	49.6	24.8	3.6	100
V	4.6	10.3	41.0	32.1	12.1	100
VI	2.6	5.6	32.0	35.3	24.5	100
VII	1.7	4.4	26.9	36.8	30.2	100
VIII	1.1	4.0	24.5	31.8	38.7	100

Kamataka, India, Comparing 2018 and 2021 (18k kids)

Catrastrophic impacts on leaming level, continued.

Table 3: \% Children by grade and reading level All schools 2018						
Std	Not even letter	Letter	Word	Std I level text	Std II level text	Total
1	40.3	39.9	15.4	2.5	1.9	100
11	17.2	31.7	30.6	13.0	7.6	100
III	9.2	19.8	30.3	21.5	19.2	100
IV	5.1	13.5	23.4	24.8	33.2	100
V	4.5	8.7	16.9	23.8	46.0	100
VI	4.2	6.7	12.8	20.5	55.8	100
VII	2.5	6.3	12.2	18.0	61.2	100
VIII	2.0	4.9	6.9	15.9	70.3	100

Table 4: \% Children by grade and reading level All schools 2021

Std	Not even letter	Letter	Word	Std I level text	Std II level text	Total
I	56.8	29.4	10.5	1.6	1.7	100
II	31.8	37.3	21.5	6.2	3.3	100
III	16.5	29.5	30.5	13.7	9.8	100
IV	12.0	19.2	30.5	20.0	18.3	100
V	6.5	12.5	23.6	23.9	33.6	100
VI	3.9	7.9	14.6	23.8	49.8	100
VII	3.3	6.3	12.8	21.2	56.5	100
VIII	2.4	5.8	8.2	17.5	66.2	100

The reading tool is a progressive tool. Each row shows the variation in children's reading levels within a given grade. For example, in Table 3 , among children in Std ill, 9.2% cannot yet read letters, 19.8% can read letters but not words or higher, 30.3% can read words but not Std I level text or higher, 21.5% can read St I I level text but not Std II level text, and 19.2% can read Std II level text. For each grade, the total of these exclusive categories is 100%.

This exacerbates existing trends

- High enrollment rates
- ...but low attendance
- And low lea ming levels

The problem is, by now, well known

Most children are going to school in India although they are absent a lot

Enrollment in school

96.7% of children (in the age group 6-14 years) a re enrolled in school in rural India.

2014 was the $6^{\text {th }}$ yearin a row that enrollmen rates have been 96% or above.

Attendance in school

Visit to a government school on any random day in September, October or November shows a bout 71\% of enrolled children are attending school on that day.

However there is a lot of variation in daily attendance across states.

And around the world too

Net attendance rate of primary school, 2015
Total number of students in the theoretical age group for primary education attending that level, expressed as a
percentage of the total population in that age group.

Source: Lee and Lee (2016) aurWorldnData.org/global-ise-of-education • CC B B he repetition of grades and are taking differences in school ages between countries into accoun ool age group. The enrolliment ratios account for

No data 0\%
20\%
40\%
60\%
80\% \% 100\%

$\downarrow 52 \quad 76$ - 24 - 47

All India (rural): All children	
ASER	\% Children who
2014	
Grade	
Std III	25.3
Std IV	40.2
Std V	50.5

$7 \longdiv { 8 6 9 (}$

All India (rural): All children					
ASER	\% Children who				
can do division		$	$	Grade	
:---:	:---:				
Std V	26.1				
Std VI	32.2				
Std VIII	44.1				

And in the world (ha rmonized leaming data from WB)

Average learning outcomes vs GDP per capita, 2015
The vertical axis shows average scores across standardized, psychometrically-robust international and regional student achievement tests. To maximize coverage by country, tests have been harmonized and pooled across subjects (math, reading, science) and levels (primary and secondary education). The horizontal axis shows GDP per capita after adjusting for price differences between countries and across time.

Going deeper: what schools miss

- Improvements in intuitive mathematics in pre-school does not lead to improvements in math in early grades
- Children who can do complicated mental a rithmetics cannot do school a rithmetic and vice versa.

Pre-sc hool mathematic ia ns (Dillon et al, 2016)

An experiment with 1,539 4-5 year old children in 214
Pratham-run preschool classes in Delhi

Classes randomized to $\mathbf{3}$ conditions:

- Math games
- Social games (active control)
- Normal curric ulum (no-trea tment control)

12+ months study:

- Month 1: Pretest assessments
- Months 2-5: Games
- Month 6: First post-test a ssessments (-94% of sample)
- EL2, EL3 a fter kids have joined school

Numerical Comparison

Sorting a deck of cards: More red dots or blue dots?

Visual Form Analysis

Which card doesn't belong with the rest?

Social games training sensitivity to emotion and gaze

© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see

First find ing

Even though the children had never played any games like these before, they leamed to play as quickly and effectively as the children in the US, and they played as enthusiastic ally. Poor Indian children have an intuitive grasp of, and interest in, number and geometry.

First find ing
 Immediate effects on the non-symbolic math tests ***
 - math games
 - social games

Children given math games were more sensitive to number/geometry than those given social or no games (opposite effects on social games).

NB: Black sta rs show signific ant treatment effec ts rela tive to no-treatment control. Red stars show relative treatment effects of math and social games. ${ }^{* * p<01,{ }^{* * *} p<001 ~}$

Even though children lost all access to the games a yearearlier, the specific impact of the math games was asbig at EL3 as at EL1.

NB: Treatment effects in percentage points, relative to no-treatment control.
Black stars show signific ant treatment effects relative to no-treatmentscontrol.
Red stars show relative treatment effects of math and social games. **p<01, ***p<001

Third finding
 A weak but signific ant effect on symbolic math at EL1....

- math games $う$

- socialgames

Endline 1
Children in the math games condition showed better mastery of Arabic numbers and of number words and shape names (as they do for US children).

...but this disa ppeared at later endlines

"who has more?"
Although the math gamesenhanced the math language and symbols used in preschool, they did not enhance children's learning of symbolic math in primary school.

Conclusion from the first study

Playing non-symbolic math games, in a good nursery school, is not suffic ient for enhancing children's readiness for lea ming school mathematics.

Schools are not able to leverage increased mathematicalability

The Market Math studies
 (Banejee et al, 2018)

- Kolkata (201 children in 92 markets)
- Delhi (400 children in 39 markets)
- 3 pair of "mystery shoppers" bought goods from children
- Then children were invited to participate in the study:
- Written assessment of sc hool a rithmetic (ASER study)
- Oral assessment of school a rithmetic
- Simple problems
- "Anchored" problems
- Inc reasingly unfa miliar hypothetical transactions
- Different price
- Different unit (i.e., kilo or unit)
- Different price and unit
- School children in delhi invited to do simulated market tra nsaction

School child ren were a sked the same math questions and asked to do simulated market transactions

Working children use a rithmetic effectively on their jobs.

Figure 1. Proportion of working and school children, by city, who calculated the total amount due in transactions involving two goods sold by the child in unusual quantities. Correct performance requires the child to perform two correct multiplicationsor divisionsfollowed by a correct subtraction. Emor bars indicate 95% CIs around the mean of both variables combined (correct and correct after mistakes).
Calculation approaches Performance of children by schooling Performance of working children and adults

The a rithmetic skills of working children are flexible, within the realm of market transactions.

Figure 2. Proportion of working children who calculated the total amount due in hypothetic al transactionscorrectly. In Kolkata, a subset of 117 children were presented with the same two problems. The first two panelsdisplay the proportion of working children in Kolkata who answered these two hypothetical transactionscorrectly, depending on whetherthey sold goods by unit or kilogram/liters. In Delhi, each child was presented with a different set of five problems, depending on whether they sold goods by unit or kilogra $\mathrm{m} /$ liters. The third panel displaysthe proportion of working children in Delhi who answered these hypothetic al transactions correctly, grouping children who sold goods by unit a nd kilogram/liters. Errorbars indic ate 95% CIs a round the mean of both variablescombined (correct and correct aftermistakes).

Despite their suc cess in markets, working children struggle with school mathematics.

Figure 3. Proportion of working children at each level of a written assessment of number recognition and a rithmetic by city. Error bars indic ate 95% C Is around the mean. Only 2% of children in Kolkata and 1% of children in Delhi failed to recognize one-digit numbers.

Ma rket children fail at sc hool mathematic sprima rily beca use of their abstract presentation.

Figure 4. Proportion of working children, by city, who solved a single oral subtraction or division problem correctly, depending on whetherit was framed in the abstract form or in terms linked to goods and money. Emor bars indic ate 95\% CIs around the mean of both variablescombined (correct and correct after mistakes). In Kolkata, these questionswere only administered to 117 of the 201 children in the study.

And yet, market children are able to fall back on effic ient strategies

 even for abstract problems if they can be rounded.

Figure 5. Proportion of working children in Delhi who solved a single subtraction problem corectly, depending on whether it was framed in the abstract form or in termslinked to goods and money, and whetherit was roundable or not (only for the subset of children who completed both sets of exercises). Eror bars indic ate $95 \% \mathrm{C}$ Is a round the mean of both variables combined (correct and correct aftermistakes).
Performance of working and school children

And yet, market children are able to fall back on effic ient strategies even forabstract problems if they can be rounded.

Figure 6. Number of times that working and school children wrote numbers and operations in the papergiven to them for the non-oral exercises.

Sample student calculation work (school children, simulated market problems)

So the problem is deeper than schools not teaching much

- They don't recognized or leverage existing knowledge (abstract or concrete)
- What little they teach is useless for life

What the problem is (mainly) not

- Children are undemourished, parents are not helping, etc: children cannot leam.
- Teacher salary \& other resources
- Incentives to do the job (as teachers understand it).

Children in India have the same funda mental lea ming processes as children in the US

- Among pre-school mathematicians, we find the same non-symbolic abilities in India as is typic ally found in US studies
- Moreoverwe find the same correlations between current and subsequent symbolic skills a nd the non-symbolic skills as in the US

Teacher salary and other resources

- Teachers are highly paid.
- Teachers salary are much higher in public than in (cheap) private schools that village children attend, yet performance in private school is at least as good (more evidence on that below)
- Non-permanent teachers who are paid a fraction of a regular teacher's salary are more effective.
- Large scale experiment in Indonesia to test the impact of doubling teacherpay led to NO increase in performance (De Rhee et al. 2018)
- Evidence also suggest no impact of cutting class size with no other changes in pedagogy in India, Kenya, etc.

Teacher incentives

- Directing incentive to specific things does help:
- In Udaipur (Rajasthan), Duflo, Hanna, Ryan (2012) found that when teachers were given an incentives to attend, they attended more and children scored better at an endline test.
- In Andhra Pradesh, Muralidharan and Sundararaman (2011) find that giving teachers incentives based on their children test scores led to increase in test scores
- However, private schools have the strongest incentives of all, since they survive based on parents' satisfaction.
- The ASER test consistently find that children going to private schools do better than children who go to government schools
- But this is entirely due to selection of children
- In large RCT, Private schools tend to teach math and Telugu less well, thought they teach hindi and English (Muralidharan and Sundararaman, 2015)

Muralidharan Sundararaman, 2015 "The aggregate effect of school choice"

Panel A: Treatment Villages

[^0]
Little impact on test scores

Except hindi and English which are not taught in public schools but are taught in private school

TABLE VI

Test Score Impacts

	Year 2 assessments				Year 4 assessments						
	Telugu score	Math score	English score	Combined across tests	Telugu score	Math score	English score	EVS score	Combined across tests excluding Hindi	Hindi score	Combined across tests
Panel A: Impact of winning a voucher (intention to treat effects)											
Offered voucher	$\begin{gathered} -0.079 \\ (0.055) \end{gathered}$	$\begin{gathered} -0.053 \\ (0.065) \end{gathered}$	$\begin{gathered} 0.185^{* *} \\ (0.079) \end{gathered}$	$\begin{gathered} 0.016 \\ (0.061) \end{gathered}$	$\begin{gathered} -0.017 \\ (0.051) \end{gathered}$	$\begin{gathered} -0.031 \\ (0.052) \end{gathered}$	$\begin{gathered} 0.116^{*} \\ (0.070) \end{gathered}$	$\begin{gathered} 0.083 \\ (0.060) \end{gathered}$	$\begin{gathered} 0.036 \\ (0.048) \end{gathered}$	$\begin{aligned} & 0.545^{* * *} \\ & (0.068) \end{aligned}$	$\begin{aligned} & 0.133^{* * *} \\ & (0.045) \end{aligned}$
Total observations	4,620	4,620	4,525	13,765	4,385	4,385	4,217	4,243	17,230	1,696	18,926
Treatment observations	1,778	1,778	1,738	5,294	1,674	1,675	1,607	1,628	6,584	867	7,451
Control observations	2,842	2,842	2,787	8,471	2,711	2,710	2,610	2,615	10,646	829	11,475
Panel B: Average treatment on the treated (ATT) effect of attending a private school (scaling up intention to treat effect by inverse of voucher take-up rate)											
Voucher recipient in private school	$\begin{gathered} -0.156 \\ (0.108) \end{gathered}$	$\begin{gathered} -0.104 \\ (0.128) \end{gathered}$	$\begin{gathered} 0.364^{* *} \\ (0.156) \end{gathered}$	$\begin{gathered} 0.032 \\ (0.120) \end{gathered}$	$\begin{gathered} -0.033 \\ (0.100) \end{gathered}$	$\begin{gathered} -0.061 \\ (0.102) \end{gathered}$	$\begin{gathered} 0.229^{*} \\ (0.138) \end{gathered}$	$\begin{gathered} 0.164 \\ (0.118) \end{gathered}$	$\begin{gathered} 0.071 \\ (0.095) \end{gathered}$	$\begin{aligned} & 1.074^{* * *} \\ & (0.134) \end{aligned}$	$\begin{aligned} & 0.262^{* * *} \\ & (0.089) \end{aligned}$
Total observations	4,620	4,620	4,525	13,765	4,385	4,385	4,217	4,243	17,230	1,696	18,926
Voucher recipients	997	997	982	5,294	945	946	911	920	6,584	510	7,451
Nonrecipients	3,623	3,623	3,543	8,471	3,440	3,439	3,306	3,323	10,646	1,186	13,475

No spillovers (perhaps not surprisingly)

TABLE VIII
Spillovers (ITT Estimates)

	(1)	Year 2 assessments		(4)	Year 4 assessments				(9)
	Telugu score	Math score	English score	Combined across tests	Telugu score	Math score	English score	EVS score	Combined across tests
Panel A: Comparing the within-village to across-village controls									
Lottery loser in treatment village	0.010	0.011	0.041	0.020	0.011	-0.002	-0.048	0.093	0.013
	(0.060)	(0.071)	(0.090)	(0.069)	(0.058)	(0.057)	(0.067)	(0.071)	(0.055)
Total observations	3,784	3,784	3,705	11,273	3,606	3,605	3,472	3,488	14,171
Treatment observations	942	942	918	2,802	895	895	862	873	3,525
Control observations	2,842	2,842	2,787	8,471	2,711	2,710	2,610	2,615	10,646
Panel B: Impact on nonapplicants from public schools									
Treatment village	-0.022	0.056	0.129	0.054	0.064	0.012	0.039	-0.004	0.028
	(0.071)	(0.066)	(0.089)	(0.067)	(0.061)	(0.067)	(0.069)	(0.071)	(0.055)
Total observations	1,030	1,030	1,008	3,068	1,173	1,174	1,145	1,149	4,641
Treatment observations	490	490	476	1,456	555	555	541	542	2,193
Control observations	540	540	532	1,612	618	619	604	607	2,448
Panel C: Impact on nonvoucher students from private schools									
Treatment village	0.067	0.028	-0.112	-0.000	0.043	0.038	-0.019	0.029	0.024
	(0.060)	(0.073)	(0.073)	(0.060)	(0.061)	(0.059)	(0.098)	(0.073)	(0.057)
Total observations	1,386	1,386	1,346	4,118	1,522	1,521	1,463	1,468	5,974
Treatment observations	721	721	708	2,150	802	802	777	773	3,15 ${ }^{8}$
Control observations	665	665	638	1,968	720	719	686	695	2,820

The tyranny of the curic ulum

- If kidscan learm and teachers do teach, could the problem be that teachers are not teaching the right material?
- "Tyranny of the curriculum": no matter what children can do, you cannot afford not to complete the curric ulum.

A sna pshot of grade 4 curic ulum, Haryana

Oct.	Math-Magic	Carts and Wheels Halves and Quarters	Understanding of circle using bangles, ropes etc. Understanding of radius of circle. Understanding of drawing a circle using compass. Understanding of half, quarter, three-fourth etc.	7 4	2 2
	$3^{\text {rd }}$ Monthly Assessment in the last week				
Nov.	Math-Magic	Play with Patterns	Understanding of patterns. Understanding of pattern without numbers. Understanding of pattern with numbers and letters. Understanding of pattern with addition. Understanding of pattern using tiles.	7	2
		Table and Shares	Understanding of tables up to 15 . Practice questions of division, word problems.	7	2
	$4^{\text {di }}$ Monthly Assessment in the last week				
Dec.	Math-Magic	How Heavy? How Light?	Understanding of heavier and heaviest. Understanding of weights of things in gms. and kg . Knowledge of weighing balance using different weights.	12	4
Jan.	Math-Magic	Fields and Fences	Understanding of perimeter of regular \& irregular figures. Understanding of areas of regular \& irregular pictures. Ability to solve word problems.	8	3

The tyranny of the curic ulum

- If kidscan learn and teachers do teach, could the problem be that teachers are not teaching the right material?
- "Tyranny of the curriculum": no matter what children can do, you cannot afford not to complete the curric ulum.
- Not only an Indian problem. It is related to how elitist the curric ulum is...
- Same problem in Kenya... and in France!
- Opposite situation in Finland, which has great test scores

TaRL Support

Pieces

For 15+ years of experimentation

2001-2003

"Balsakhi" program; Pratham community volunteer "pull out" remedial program in urban schools

2008

In-school one month gov't teacher-led summercamp with support by rural village volunteers

2010-2013

Ghana trials of tea cherled vs. tutor-led in school and out of school

2013-2014

"Learning Camps" in gov't primary schools; led by Pratham teams supported by village volunteers

2012-2013
Teacher-led model; onsite mentoring by gov't academic officials

Pratham staff/volunteers in-school

Evaluation design:

- Tl (2, 20-day): 120 schools
- T2 (4, 10-day): 120 schools
- Control: 120 schools

Results:

- Huge gains (. 7 s.d. in Hindi and math)
- Effect of "pure" Ta RL model
- Cost effective (driven by huge gains)

Pratham staff/volunteers in-school

Uttar Pradesh (2013-2014)

Delivery: Pratham staff and volunteers
Location: In-school
Timing: During school hours, 2 hours a day

Duration: 50 days

Special characteristics:

- Intensive camp model
- Dedic ated time
- Grouping a c ross Std 3-5

Teaching at the right level today: Scale up to millions in India and Africa under Pratham Leadership

Fixing primary education

- Give up on schools?
- Pratham recent Digital efforts mainly out of school
- Great potential, Remarkable impacts of some initatives (Garminian et al, RCT of mindspark, a software programs used during tutoring lessons)
- Satisfying... but
- Schools continue to have the monopoly to test and legitimate knowledge
- Funda mental problem with this approach is that kids are in school, a nything else requiresconvincing them to show up
- First Read India program was out of school: very large effect on very few kids
- Very low willingness to pay for Mindspark (the educational program)

Disupting education?

- Lottery to give access to tuition with mindspark program, an Al based software to provide drills adapted to level to each child.
- Large impacts

Figure 2. Mean Difference in Test Scores between Lottery Winners and Losers
Notes: This figure shows mean of test scores, normalized with reference to baseline, across treatment and control groups in the two rounds of testing with 95 percent confidence intervals. Test scores were linked within-subject through IRT models, pooling across wrades and across baseline and endline, and are normalized to have a mean of or and a standard deviation of 1 in the baseline. Whereas baseline test scores were balanced between lottery winners and lottery losers, endline scores are significantly higher for the treatment group.

Garminian et al, disrupting education

Impact throughout the distribution... But no impact on grade level questions in math

And hence moderate to no impact on school exams

Table 7-Treatment Effect on School Exams

	Standardized test scores					
	Hindi	Math	Science	Social sciences	English	Aggregate
	(1)	(2)	(3)	(4)	(5)	(6)
Treatment	0.196	0.059	0.077	0.108	0.081	0.100
	(0.088)	(0.076)	(0.092)	(0.110)	(0.105)	(0.080)
Baseline Hindi score	0.487		0.292	0.414	0.305	0.336
	(0.092)		(0.064)	(0.096)	(0.067)	(0.058)
Baseline math score		0.303	0.097	0.262	0.120	0.167
		(0.041)	(0.036)	(0.058)	(0.052)	(0.039)
Constant	1.006	0.142	0.931	1.062	1.487	0.977
	(1.103)	(0.423)	(0.347)	(0.724)	(0.740)	(0.600)
Observations	597	596	595	594	597	597
R^{2}	0.190	0.073	0.121	0.177	0.144	0.210

Notes: Robust standard errors in parentheses. This table shows the effect of receiving the Mindspark voucher on the final school exams, held in March 2016 after the completion of the intervention. Treatment is a dummy variable indicating a randomly assigned offer of a Mindspark voucher. Test scores in the school exams are normalized within school \times grade to have a mean of zero and a standard deviation of one in the control group. All regressions include grade and school fixed effects.

- And no parent interest... and program had to stop

Despite the large test-score gains we tind, parental demand tor Mındspark centers was low in the absence of (fee-waiving) vouchers. In fact, all three centers in our study closed down soon after the conclusion of our experiment in the face of low parental willingness to pay (even at the subsidized price that was charged to the students outside our study who attended the Mindspark centers). The donors who subsidized the fees for regular students at Mindspark centers stipulated that they would only continue funding the subsidies if the centers could operate at or above 80 percent capacity (and thereby demonstrate parental willingness to pay at least the subsidized price). In practice, enrollment levels were considerably below this target, and the centers had to shut down because philanthropic funding for the subsidies ended. ${ }^{35}$ Thus, models of

Fixing primary education

- Give up on schools?
- Digital efforts mainly out of school
- Great potential, Remarkable impacts of some initatives (Garminian et al, RCT of mindspark, a software programsused during tutoring lessons)
- Satisfying... but
- Funda mental problem with this approach is that kids are in school, a nything else requiresconvincing them to show up
- First Read India program was out of school: very large effect on very few kids
- Very low willingness to pay for Mindspark (the educational program)
- Schools continue to have the monopoly to test and legitimate knowledge
- Parents continue to buy into the obsession of elitism: schools is valuable for the possibilities it opens up (see the private school impacts, ma inly on English and Hindi)-See Kenya and hope forlarge retums to secondary school education.

Fixing primary education

Changing the curic ulum?

- That remains the holy grail: many of the problems of the system a re ultimately anchored in the curric ulum
- Tremendous opposition from the education world..
- We seem to be going the other way
- Partial efforts a re counterproductive:

Example of CCE evaluation in Ha ryana

- Glimmer of hope: Delhi. Massive tracking and decision not to finish curric ulum in Delhi led to large gains before the pandemic.

Fixing primary education

Working on the margins: Some parts of the system are more open

- Tutoring
- Completely defunct schools
- Pre-school
- Early Grade where it may be possible to complement the curric ulum
- Summers

Preparing the kids better for prima ry school: Second experiment with of Duflo-Spelke team.

1896 children in 231 Delhi preschools. 4 conditions: non-symbolic math games, symbolic math games, mixed math games, no-treatment.

Non-symbolic games

Symbolic games

2

Second expt.: Effects on the non-symbolic measures

- non-symbolic games
- symbolic games
- mixed games

The non-symbolic and mixed games increased children's sensitivity to number and geometry in dot a rrays and forms. Enduring effects, replicating Exp. 1. Symbolic games had no effect on the intuitive tasks, suggesting the symbols were not given numerical meaning.

NB: Preliminary findings. Z-sc ores from pre-registered measures and a na lyses. Data labeled in black show signific ant treatment effects relative to no treatmentscontrol. No differences between the 3 treatment conditions are significant. *p<05, **p<01,**p<001

Second expt.: Effects on the symbolic measures
\square non-symbolic games \quad symbolic games \quad mixed games

Endline 1
Endline $2 \quad$ Endline 3
All 3 conditions enhanced symbolic math abilities at EL1.
The mixed games also enhanced school math leaming at the later endlines

NB: Prelimina ry find ings. Z-sc ores from pre-registered mea sures and a nalyses. Data labeled in black show signific ant treatment effects relative to no treatment control.

Experiment 3: Sc alable model

Games for kindergarten and Grade 1 children in 141 govemment schools (randomized to treatment vs. control).
Games are led by regularteachers and played by all children at once, in groups.
Cards emphasize the base-ten structure of the number system and the equivalence of
 one ten and ten ones.

Front

Back

G 1: Numbers 1-100, Decks go from being 100\% double sided to 0%

KG: Numbers 1-20, Decks go from being 100\% double sided to 25 \%

Non-symbolic

Symbolic

Find shape

Distinguish between dissimilar (3 sided versus 4) and similar shapes (tria ngles)
Pemendic ular \& parallel lines, Acute and Obtuse angles, length of sides, symmetry

01	6	8	L	9	G	\dagger	ε	乙	1
02	61	81	L1	91	St	カ	$\varepsilon 1$	21	1
11	12	13	14	15	16	17	18	19	20
1	2	3	4	5	6	7	8	9	10

Find and Move

Board numberrange: 1-100 (Grade 1), 1-20 (Kindergarten). Decks use dot arrays and Arabic numbers

Board

Non-symbolic

Symbolic

Find and Move

KG Properties: Inside, On the side, Near
Grade 1 Properties: Inside, On the side, Near, Longest Side, Shortest Side, Largest Angle, Smallest Angle

Results

- Math games led to strong impact on symbolic math outc omes for both Kindergarten and Grade 1 students

Fixing primary education

Working on the margins: Some parts of the system are more open

- Tutoring
- Completely defunct schools
- Pre-school
- Early Grade where it may be possible to complement the curric ulum
- Summers

The wory is the temptation to close this margin as it expands

- Regulate coaching center
- Set up a curric ulum for pre-school

Ready to scale!

- Games were very received by teachers (in contrast to remedial education packages that is hard to get implemented in schools)
- Effects were still larger in classes that played it more.
- Training is easy: one day training + material
- Talking to several State govemments with the hope of encouraging scale up
- Hoping to talk to game company to encourage publication of games

Fixing primary education

Patience

- Ultimately there is probably not going to be a silver bullet
- We will need to continue to engage with the sc hool system as it is, however frustra ting
- The good thing is that we exactly know what needs to be done
- The challenge is to exploit all existing wedges and pry open new ones at every opportunity.
- There are real gains, and they are multiplied by millions of children.

References

- ASER. Annual Status of Education Report (Rural). Va rious Reports.
http://www.a serc entre.org/Keywords/p/393.html
- Banerjee, A.V., Bhattacharjee, S., Chattopadhyay, R. and Ganimian, A.J., 2017. The Untapped math skills of working children in India: Evidence, possible explanations, and implic ations. Unpublished ma nusc ript.
- De Ree, J., Muralidharan,K., Pradhan, M. and Rogers, H., 2018. Double for nothing? Experimental evidence on an unconditional teacher salary increase in Indonesia. The Quarterly journal of Ec onomics, 133(2), pp.993-1039.
- Dillon, M.R., Kannan, H., Dean, J.T., Spelke, E.S. a nd Duflo, E., 2017. Cognitive science in the field: A preschool intervention durably enhances intuitive but not formal mathematics. Sc ience, 357(6346), pp.47-55.
- Duflo, E., Hanna, R. and Ryan, S.P., 2012. Incentives work: Getting teachers to come to school. American Economic Review, 102(4), pp.1241-78.
- Muralidharan, K. and Sundararaman, V., 2011. Teacherperformance pay: Experimental evidence from India. J ournal of politic al Ec onomy, 119(1), pp.39-77.
- Muralidharan, K. and Sundararaman, V., 2015. The aggregate effect of school choice: Evidence from a two-stage experiment in India. The Quarterly Journal of Ec onomic s, 130(3), pp.1011-1066.

MIT OpenCourseWare
https://ocw.mit.edu/

14.771: Development Economics

Fall 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: © Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

