14.771: Breaking the Poverty trap? The "graduation" approach

Esther Duflo

- An influential anti-poverty program is predicated on the idea that there exists a poverty trap.
- Another type of program argues that by giving people a capital infusion and help them to get started, you can help them escape poverty. In the policy space this is often referred to as "graduation."
- Questions for today:
 - Does this work?
 - Is there evidence of a poverty trap
 - O we know where the poverty trap may be coming from?

Graduation approach in a nutshell

- Identification by community
- Asset transfert (\$250 PP)
- Income support for a few weeks
- Technical support
- Group meetings/coaching/health (minor)
- Regular savings.

The additional components roughly double the cost of the transfer itself, which cost 1,000 in Bangladesh

A package intervention that is extremely expensive, with the view that you would get returns over the lifetime of the person if they stayed rich.

(Reference: Imbens and Woolridge, 2008, Imbens and Rubin 2014).

- Consider a binary treatment W: 1 for treated, 0 for control, and an outcome Y (e.g. the treatment is : got ultra poor program, outcome is: earnings).
- Ex-ante, each individual *i* has two *potential outcomes*, $Y_i(1)$ if treated, $Y_i(0)$ if non-treated.

$$Y_i(obs) = Y_i(1)W_i + Y_i(0)(1 - W_i)$$

- This assume SUTVA (stable unit treatment value assumption) that treatment values for other units do not affect the outcome for a unit (otherwise we have more than two potential outcome depending on who is treated).
- The *treatment effect* for individual *i* is $Y_i(1) Y_i(0)$.
- Ex-post, only one of the outcomes is realized: individual is treated or non-treated. Since no individual is observed both in the treated and non-treated state, we will not be able to estimate the treatment effect for each individual.

Duflo

Estimand

- We could be interested in the average treatment effect for the population: $E[Y_i(1) Y_i(0)].$
- we could want to know the average treatment effect for those who receive the treatment: $E[Y_i(1) Y_i(0)|W_i = 1].$
- Could be interested in the average treatment for those who have some characteristics (observed or unobserved): $E[Y_i(1) Y_i(0)|X_i = x]$, i.e. the poor, those with poor baseline achievements
- Or we may want to know other things about the treatment:
 - How the treatment is affecting the distribution in treatment and control groups (quantile treatment effects).
 - The quantile of treatment effects (this is not the same, and it is very hard to know!)

Estimating Average Treatment Effect

Suppose we have a population, with N_1 treated individual, and N_0 non treated individuals. Consider the difference between treated and control population:

$$E[Y_i(1)|W_i = 1] - E[Y_i(0)|W_i = 0]$$

$$= E[Y_i(1)|W_i = 1] - E[Y_i(0)|W_i = 1]$$

$$+E[Y_{i}(0)|W_{i}=1]-E[Y_{i}(0)|W_{i}=0]$$

$$= E[Y_i(1) - Y_i(0)|W_i = 1] + E[Y_i(0)|W_i = 1] - E[Y_i(0)|W_i = 0]$$

First term: ATT. Second term: difference in the underlying characteristics of the treated and non treated population (selection effect).

Three cases:

- The probability of assignment does not depend on potential outcomes, and is a known function of covariates (*random assignment*). this case,
 E[Y_i(0)|W_i = 1] = E[Y_i(0)|W_i = 0] and E[Y_i(1)|W_i = 1] E[Y_i(0)|W_i = 0] is an unbiased estimate of the effect of the treatment on the treated.
- The probability of assignment does not depend on potential outcomes, but is an *unknown* function of covariates .

$$W_i \perp (Y_i(1), Y_i(0)) | X_i$$

(unconfoundness assumption, a.k.a. exogeneity, selection on observables, regular assignment). In this case, $E[Y_i(0)|W_i = 1, X = x] = E[Y_i(0)|W_i = 0, X = x]$, so the selection bias disappears if we appropriately control for x. Matching, propensity score matching, regressions, DML estimator, are various ways to deal with this.

Selection mechanisms (3)

- The probability of assignment depends on potential outcomes: there is a selection bias of unknown size. Program evaluation question is to find ways to deal with that. Leading strategies: *Difference-in-differences, Regression Discontinuity, Instrumental variables.*
- Special case: Latently regular assignment mechanisms. The receipt of treatment is not regularly assigned but there is a variable that assigns to treatment for which the assumption of unconfoundedness is valid. With more assumptions, one can recover causal effects (IV).

Randomized Controlled Trials

- By definition, randomized assignment solves the selection bias in the sample.
- Some remaining issues raised in the literature:
 - Uncertainty: Power (1-proba of type 2 error) depends on sample size, design, variability of the outcome of interest
 - Biases: imperfect compliance with assignment, spillovers, etc.
 - "External validity" : to what extent do the result in one site predict the results for the same program done elsewhere?
 - "Cherry picking": with multiple outcomes multiple regressions, risk to report the one result that looks good.

Graduation

- Two recent studies show remarkable effects of these transfers
 - *Bandiera et al 2017 QJE*: RCT of the BRAC ultra poor program in Bangladesh. Follows people for 4 years.
 - Banerjee et al 2015 Science: Similar intervention in 6 countries (Ethiopia, Ghana, Honduras, India, Pakistan, Peru), followed for 3 years.

Bandiera et al

	Pe	overty and consump	tion	Financial assets			
	(1) Below poverty line	(2) Consumption expenditure (per adult equivalent)	(3) Value of household assets	(4) Household cash savings	(5) Household receives loans	(6) Household gives loans	
Program impact after 2 years	-0.051	30.19	6.86	54.54***	0.123***	0.042***	
Program impact after 4 years	-0.084**	(20.34) 62.62*** (20.82)	39.65***	(4.60) 53.22*** (4.01)	0.110***	0.051***	
Control mean at 4-year follow-up	0.624	575.73	69.69	425	0.220	0.016	
Pour-year impact: % change 2-year impact = 4-year impact [p-value]	-13.5% 0.379	0.111	0.000	24% 0.781	0.714	0.527	
Adjusted <i>R</i> -squared Number of ultra-poor women	0.032 6,732	0.044 6,732	0.082 6,732	0.204 6,732	0.086 6,732	0.026 6,732	
Observations (clusters)	18,882 (40)	18,838 (40)	20,196 (40)	20,179 (40)	20,196 (40)	20,196 (40)	

TABLE IV TREATMENT EFFECTS ON CONSUMPTION, HOUSEHOLD, AND FINANCIAL ASSETS OF ULTRA-POOR HOUSEHOLDS

© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Table 3. Indexed family outcome variables and aggregates.

		Endline 1		Endline 2			
	(1)	(2)	(3)	(4)	(5)	(6)	
Indexed outcomes	omes Standardized mean treatment effect		F-test of equality of coefficients across sites, with q-values	Standardized mean treatment effect	q∙value for all 10 hypotheses	F-test of equality of coefficients across sites, with q-values	
Total per capita	0.122***	0.001	3.207	0.120***	0.001	5.307	
consumption, standardized	(0.023)		0.009	(0.024)		0.001	
Food security	0.107***	0.001	1.670	0.113***	0.001	2.405	
index (five components)	(0.022)		0.139	(0.022)		0.050	
Asset index	0.258***	0.001	14.26	0.249***	0.001	23.90	
	(0.023)		0.001	(0.024)		0.001	
Financial inclusion	0.367***	0.001	55.33	0.212***	0.001	10.70	
index (four components)	(0.030)		0.001	(0.031)		0.001	
Total time	0.090***	0.001	7.520	0.054***	0.004	2.644	
spent working, standardized	(0.018)		0.001	(0.018)		0.038	
Incomes and	0.383***	0.001	12.05	0.273***	0.001	5.82	
revenues index (five components)	(0.036)		0.001	(0.029)		0.001	
Physical health	0.034*	0.078	3.825	0.029	0.159	0.776	
index (three components)	(0.019)		0.003	(0.020)		0.630	
Mental health	0.099***	0.001	5.189	0.071***	0.001	1.781	
index (three components)	(0.022)		0.001	(0.020)		0.142	
Political Involvement	0.064***	0.001	4.176	0.064***	0.002	2.624	
index (four components)	(0.018)		0.002	(0.019)		0.038	
Women's empowerment	0.046**	0.049	1.803	0.022	0.385	0.469	
index (five components)	(0.023)		0.121	(0.025)		0.800	

© American Association for the Advancement of Science.. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Features to note in the Banerjee et al. study

- Several sites
- Same program, BRAC inspired, coordinated (regular meetings).
- Group outcomes into indexes
- Corrects standard errors for multiple outcomes.

Country by Country results

Country by Country results

Are the results similar or different? Bayesian hierarchical analysis Meager, et a.

- Basic idea: results are different in different countries for two reasons:
 - There is noise in the estimate
 - The estimates are different
- BHM assumes that treatment effect are drawn from a normal distribution, with some variance
- It uses the data sets to estimate the mean and the variance of the treatment effects.
- Country-level estimates will tend to get closer together as their "borrow" some of their precision from other studies
- And we get an ideal of the heterogeneity of the treatment effect from site to site.

BHM vs Frequentist Pooled Reg (Endline 1)

← Linear model (no hierarchy) ← Hierarchical Bayesian model

Duflo

18 / 41

Poverty Traps

Predictive effects suggest major heterogeneity across studies

Linear model (no hierarchy)
 HBM prediction

Duflo

Poverty Traps

Cost-benefit

- Two key issues.
- Costs.
 - These programs are really, really expensive.
 - Only 'worth it' if benefits persist long into the future.
 - Recall Bandiera et al 2017 Table IV. After 4 years, consumption is about 11 percent higher.
 - In cost-benefit, they assume those consumption increases last until year 20.
 - The depreciation rate of benefits turns out to be key.

Cost-benefit

TABLE IX

COST-BENEFIT ANALYSIS

Panel A: External parameters	
Cost per household at year 0	1,121.34
Cost per household discounted at year 4 Social discount rate $= 5\%$	1,363.00
Panel B: Estimated consumption benefits	
1 Change in household consumption expenditure year 1	61
2 Change in household consumption expenditure year 2	106
3 Change in household consumption expenditure year 3	237
4 Change in household consumption expenditure year 4	345
5 NPV Change in household consumption expenditure	3,581
from year 5 for 20 years	
6 Change in household assets year 4	40
7 Total benefits (1+2+3+4+5+6)	4,369
8 Benefits/cost ratio (assuming benefits last 20 years	3.21
from transfer date)	
Sensitivity to different discount rates/time horizons	
Social discount rate $= 10\%$	2.50
Benefits last 10 years from transfer date	1.86
Benefits last 5 years from transfer date	0.82
9 IRR (assuming benefits last 20 years from transfer date)	0.22
Sensitivity to different outside options/time horizons	
Wage jobs available all year at \$0.34 per hour	0.16
Benefits last 10 years from transfer date	0.17
Benefits last 5 years from transfer date	-0.01
Panel C: Estimated asset benefits	
10 Change in productive assets year 4	1,030.50
11 Change in financial assets year 4	85.10
12 Increase in assets/asset cost	1.85

© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Table 4. Cost-benefit analysis.

Pan	el A: Program costs per household, USD PPP 2014	Ethiopia	Ghana	Honduras	India	Pakistan	Peru
_	Direct transfer costs	1228	680	724	700	2048	1095
(1)	Asset cost	1228	451	537	437	1043	854
	Food stipend	0	229	187	263	911	241
	Total supervision costs	1900	2832	1633	407	-	3357
	Salaries of implementing organization staff	347	1994	801	297	-	2477
	Materials	33	119	112	1	-	55
	Training	850	44	121	19	-	111
	Travel costs	174	293	210	17	-	55
	Other supervision expenses	496	382	388	73	-	660
	Total direct costs	3127	3513	2356	1107	4680	4452
	Start-up expenses	43	133	104	38	-	45
	Indirect costs	421	1026	209	112	470	462
	Total costs, calculated as if all incurred immediately at beginning of year 0	3591	4672	2670	1257	5150	4960
(2)	Total costs, inflated to year 3 at 5% annual discount rate	4157	5408	3090	1455	5962	5742
	Exchange rate to PPP adjustment scalar	3.41	2.19	1.90	3.52	4.44	1.84

Panel B: Benefits per household, USD PPP, all values inflated or deflated to year 3 at 5% annual social discount rate

(3) Ver1 annual nondurable consumption ITT, assuming treatment effect equal to year 2 (4) Vear 2 annual nondurable consumption ITT treatment effect (5) Vear 3 household assel ITT treatment effect (6) Vear 3 nondurable annual consumption ITT treatment effect. (7) Vear 4 onwale total consumption ITT treatment effect.)	451 451 63 424	293 293 15 332	66 66 -20 -218	344 344 6 251	613 613 7 451	339 339 37 263	
assuming year 3 gains persist in perpetuity (8) Total benefits: $(3) + (4) + (5) + (6) + (7) = (8)$	9417 10805	6241 7175	-6011 -6118	5354 6298	8994 10678	7402 8380	
(9) Year 3 productive asset ITT treatment effect	851	118	32	171	163	59	
(10) Year 3 savings balance ITT treatment effect	272	11	32	9	7	45	
Panel C: Benefit/cost ratios							
(11) Total benefits/total costs ratio: (8)/(2) = (11)	260%	133%	-198%	433%	179%	146%	
(12) (Ideurabeld, productive and financial) (cost of anot transferre)							
(12) (nouseroud, productive and manipally cost of asset transfers. [(5) + (9) + (10)1/(1) = (12)	97%	32%	8%	43%	17%	16%	
(13) Increase in asset value/transfers, 10th percentile	56%	596	-3%	196	296	796	
(14) Increase in asset value/transfers, 25th percentile	72%	12%	8%	10%	796	8%	
(15) Increase in asset value/transfers, 50th percentile	85%	20%	15%	23%	15%	7%	
(16) Increase in asset value/transfers, 75th percentile	123%	29%	20%	58%	45%	16%	
(17) Increase in asset value/transfers, 90th percentile	175%	37%	32%	131%	52%	7%	
Sensitivity analysis							
(18) Internal rate of return (IRR)	13.3%	6.9%	-	23.4%	9.5%	7.5%	
(19) Annual rate of dissipation of the treatment effect such that costs = benefits	10.3%	1.8%	-	31.1%	5.0%	2.6%	
(20) Benefit/cost ratio, at discount rate of 7%	182%	93%	-132%	306%	127%	102%	
(21) Benefit/cost ratio, at discount rate of 10%	124%	63%	-84%	211%	88%	69%	

© American Association for the Advancement of Science.. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

• Line 19 calculates dissipation rate of treatment effect for break-even

Duflo

Are results persistent? Banerjee, Duflo, Sharma, 2021: Evidence from India

Per capita consumption (2018 USD PPP) persistently higher for TUP hh

- Treatment effect grows and persists: 0.3 SD; 0.3 SD; 0.7 SD; 0.6 SD.
- \bullet Control level at four endlines: 1.8/day, 2.2/day, 2.4/day, 2.9/day.
- Extreme poverty definition: 2.1/day; Moderate poverty definition: 3.5/day.

Are results persistent? Banerjee, Duflo, Sharma, 2021: Evidence from India

Income (2018 USD PPP) persistently higher for TUP hh

• Treatment effect grows and persists: 0.15 SD; 0.15 SD; 0.33 SD; 0.26 SD.

Positive effect on food security, physical, mental health

	Food security	Financial inclusion	Physical health	Mental health
		18 m	onths	
Treatment	0.184***	-0.004	0.061**	0.115***
	(0.048)	(0.042)	(0.028)	(0.029)
Control Mean	0.35	0.14	0.12	0.32
		3 ve	ars	
Treatment	0.251***	0.192***	0.027	0.012
	(0.059)	(0.062)	(0.027)	(0.037)
Control Mean	0.94	0.30	0.21	0.75
		7 ve	ars	
Treatment	0.431***	0.181	0.130***	0.249***
	(0.062)	(0.135)	(0.031)	(0.042)
Control Mean	1.09	0.67	0.57	1.09
		10 y	ears	
Treatment	0.127**	0.121	0.187***	0.203***
	(0.063)	(0.152)	(0.040)	(0.044)
Control Mean	1.21	1.08	0.12	0.76

- Similar pattern of growth, persistence.
- In baseline standard deviation units: index creates z-scores, standardizes to baseline.

Details

10 / 20

Positive effect on assets, but declines by year 10

	Asset index	Productive	Household
		18 months	
Treatment	0.222**	0.467***	0.125
	(0.111)	(0.087)	(0.092)
Control Mean	-0.19	-0.23	-0.12
		3 years	
Treatment	0.389***	0.571***	0.245**
	(0.103)	(0.072)	(0.098)
Control Mean	-0.25	-0.30	-0.17
		Zveare	
Treatment	0.814***	0.795***	0.600***
in edition e	(0.132)	(0.083)	(0.118)
Control Mean	-0.46	-0.40	-0.35
		10 years	
Treatment	0.346***	0.197*	0.245**
	(0.121)	(0.105)	(0.113)
Control Mean	-0.26	-0.10	-0.21

• Principal component analysis + z-scores.

• Households diversify income source by year 10: up next. 11/20

Updated cost benefit analysis

- Costs in India (2018 USD PP) \$2048 (of which direct transfer is 56%)
- Breaks even by year 4
- Return: 351% by year 10; 510% if 10-year consumption gains persist until year 15; 1123% if in perpetuity.

Cost-benefit

- Two key issues.
- Costs.
 - These programs are really, really expensive.
 - Only 'worth it' if benefits persist long into the future.
 - Recall Bandiera et al 2017 Table IV. After 4 years, consumption is about 11 percent higher.
 - In cost-benefit, they assume those consumption increases last until year 20.
 - The depreciation rate of benefits turns out to be key.
- Heterogeneity.
 - These programs have highly heterogeneous returns.
 - Examine using quantile treatment effects.

Heterogeneity

© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Cost-benefit

- Two key issues.
- Costs.
 - These programs are really, really expensive.
 - Only 'worth it' if benefits persist long into the future.
 - Recall Bandiera et al 2017 Table IV. After 4 years, consumption is about 11 percent higher.
 - In cost-benefit, they assume those consumption increases last until year 20.
 - The depreciation rate of benefits turns out to be key.
- Heterogeneity.
 - These programs have highly heterogeneous returns.
 - Examine using quantile treatment effects.
 - A key question is therefore: how do you identify the people with highest returns?

Poverty trap?

- Persistent impact of temporary transfer in India suggests that there is a poverty trap
- Similar results in Bangladesh (though randomization is lost after year 4).
- Direct evidence of the S-shape mechanism?
- Balboni, Bandiera, Burgess, Ghatak and Heil, 2021 "Why do people stay poor"

Why do people stay poor?

- One of the first serious attempt to draw a "S-curve" at the individual level (there has been other effort to establish non convexity in returns to investment of small firms that we will see later).
- Some people had been skeptical... (Kray and McKenzie)
- However what is the main empirical problem with observational data ?
- It is that you would not expect to see anyone precisely near the unstable steady state: they would be pushed either side towards the stable steady state.
- So what would we be expected to see for the distribution of assets?
- Bimodal distribution

Bimodal distribution of asset in Bangladesh ultra poor villages

Figure 1: Distribution of Productive Assets in Bangladeshi Villages: all Wealth Classes

© Clare Balboni, Oriana Bandiera, Robin Burgess, Maitreesh Ghatak, and Anton Heil. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Duflo

Poverty Traps

How does the ultra poor program help us?

- What would have been the ideal experiment to identify a poverty trap?
- That was not the experiment conducted, but how does it come relatively close?
- Depending on original wealth, for some treatment people the transfer was enough to move them above the threshold, and for some, not.

Bimodal distribution of asset in Bangladesh ultra poor villages

Figure 1: Distribution of Productive Assets in Bandadeshi Villages: all Weakh Classes

Matrix: The graph does bourd density outstances of the destrution of hosting predictory asses in the full sample of 2100 hostinghad and 2100 hosting and 2100 hosting and 200 hosting and 200

Same distribution as previous figure but impute the median value of a cow.

© Clare Balboni, Oriana Bandiera, Robin Burgess, Maitreesh Ghatak, and Anton Heil. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Transitional equation, treatment villages

Figure 4: Local Polynomial Estimates of the Transition Equation

Transitional equation, control villages

S shape but just one steady state

- Define $\Delta_i = k_3 k_1$
- Define \hat{k} as the threshold level of capital, where the S-curve in figure 4(a) crosses the 45 degree lines (which we can just estimate once we have the non parametric estimation equation).
- Figure suggest that if baseline capital+transfer is below \hat{k} , Δ_i should be negative, and above \hat{k} , it should be positive
- To get a counterfactual of how someone with that level of capital *would* have grown, we use the control group and assign to them their baseline+ the transfer they would have gotten.
- We then run an interaction specification.

Difference in difference estimate, above and below the threshold (with transfer)

	Dependent variable: Δ_i							
	(1) Treatment	(2) Control	(3) Both	(4) Treatment	(5) Control	(6) Both		
above k	0.297*** (0.043)	-0.020 (0.052)	-0.020 (0.057)	0.475*** (0.070)	-0.097 (0.598)	-0.097 (0.669)		
Treatment			-0.483*** (0.059)			0.398 (0.664)		
above $\hat{k} \times \text{Treatment}$			0.318*** (0.070)			0.571 (0.672)		
Baseline assets				-2.199*** (0.698)	-0.463* (0.266)	-0.463 (0.298)		
above \hat{k} \times Baseline assets				1.969*** (0.729)	-0.097	-0.097		
Treatment \times Baseline assets						-1.737** (0.716)		
above \vec{k} \times Treatment \times Baseline assets						2.067*** (0.744)		
constant	-0.138*** (0.033)	0.345*** (0.046)	0.345*** (0.050)	-0.282*** (0.057)	-0.680 (0.592)	-0.680 (0.662)		
N	3292	2450	5742	3292	2450	5742		

Notes: $i_{1} p < 0.1$, $i_{1} p < 0.5$, $\cdots p < 0.0$. Standard errors in breachets. Sample: ultrappoor households in treatment and control villages with key housing productive assets before 3 Observations from control households are excluded if their baseline productive assets serve allows 3 if they had received the transfer. The dependent variable is the difference between the structure of the productive assets are also well at they had received the transfer. The dependent variable is the difference between the structure of t

Where does the poverty trap really come from?

- Balboni et al, take the transition equation very literally to be something about assets.
- Banerjee et al. insist on the diversification of household businesses across the endline, and for the last endline the role of distant migration (or the younger generation).
- Karlan et al (Ghana), have an explanation that is related to "capability". They show that people who get the TUP transfer work more productively on work requiring focus (behavioral explanation-we will get back to this after we study a bit more behavioral).

References I

P

Clare Balboni, Oriana Bandiera, Robin Burgess, Maitreesh Ghatak, and Anton Heil, Why do people stay poor?

Oriana Bandiera, Robin Burgess, Narayan Das, Selim Gulesci, Imran Rasul, and Munshi Sulaiman, Labor markets and poverty in village economies, The Quarterly Journal of Economics 132 (2017), no. 2, 811–870.

Abhijit Banerjee, Esther Duflo, Nathanael Goldberg, Dean Karlan, Robert Osei, William Parienté, Jeremy Shapiro, Bram Thuysbaert, and Christopher Udry, A multifaceted program causes lasting progress for the very poor: Evidence from six countries, Science **348** (2015), no. 6236.

Abhijit Banerjee, Esther Duflo, and Garima Sharma, Long-term effects of the targeting the ultra poor program, American Economic Review: Insights (Forthcoming).

Abhijit Banerjee, Dean Karlan, Robert Osei, Hannah Trachtman, and Christopher Udry, Unpacking a multi-faceted program to build sustainable income for the very poor.

Guido W Imbens and Donald B Rubin, Causal inference in statistics, social, and biomedical sciences, Cambridge University Press, 2015.

Guido W Imbens and Jeffrey M Wooldridge, Recent developments in the econometrics of program evaluation, Journal of economic literature 47 (2009), no. 1, 5–86.

Aart Kraay and David McKenzie, Do poverty traps exist? assessing the evidence, Journal of Economic Perspectives 28 (2014), no. 3, 127-48.

Rachael Meager, Andrew Gelman, Dean Karlan, Chris Udry, and Witold Wiecek, A multifaceted approach to poverty alleviation in six countries: A bayesian hierarchical analysis of the graduation program.

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

14.771: Development Economics Fall 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.