The capacity curve

Figure 1: The Capacity Curve
The Piece Rate

Figure 1: The Capacity Curve The Piece Rate

Figure 1: The Capacity Curve The Piece Rate

A ggregate labor supply

Possible equilibria

Figure 3: Possible Equilibria

Figure 3: Possible Equilibria

The effect of non-labor income

Figure 4: Effect of Non-Labor Income on the Capacity Curve

Figure 4: Effect of Non-Labor Income on the Capacity Curve

Distribution of land

L abor supply as function of land owned

Figure 6: Effective
Reservation Wage

Different types of equibria

Figure 7: Types of Equilibria

Policy experiments

- L and R eform:
- MAY improve production and employment (how?)
- CAN improve production without reducing unvoluntary unemployment (how?)
- Is it possible to improve the lot of the poor without decreasing someone' s lot?
- The economy is PARETO EFFICIENT: it is impossible to improve the welfare of someone without decreasing the welfare of someone else
- Minimum wage
- Cash tranfer

Intra family issues

- Suppose you have a family of two, how should they share resources?

A dynamic version

- Introduce some dynamics: you can "borrow" or "invest" in your capacity
- W hat may happen to the capacity curve of tomorrow as a function of how you eat today?

Capacity curve with different nutrition histories

Capacity curve with different nutrition histories

Implications

- With better nutrition history, can produce more for each level of nutrition
- Long term effects of short term investments: potentially very high returns
- Returns to investing in children:
- Long term impacts of deworming for a short period of time: 23% increase in wage for just two extra years with deworming
- Special example: in utero nutrition.

Labor M arkets

- Suppose an employer could reap the benefit of investing in a worker, what would they now want to do?
- Do they have incentives to do so in a casual labor market?
- Possible arrangements:
- Borrowing: what is the difficulty?
- Long term contracts (bonded labor; slavery: Time on the cross)

Interpretation

- Resources may not be shared equally within the family
- Gender discrimination
- Widows: "W itch Killings" in A frica (Ted Miguel)
- Children and A dults: households may decide to feed adults. Combined with the dynamic version of capacity curve, this may perpetuate the cycle.

Conclusion

- Convexity (S shape) of capacity curve can generate poverty trap
- Next time: we will empirically examine the components of the capacity curve and see whether there is evidence of convexity.
- What we need for a poverty trap
- Strong relationship between income and nutrition
- Strong relationship between nutrition and productivity

References

- Ray, D. (1998). Development Economics. Princeton University Press: Princeton, NJ.
- Dasgupta, P. (1997). N utritional status, the capacity for work, and poverty traps. Journal of Econometrics, 77(1), 5-37.

From Theory to Mechanisms and Evidence

- This model wants us to think about one particular mechanism of poverty traps based on a non standard production function
- This is not the only form that poverty trap can take but it is a frequent one
- Other sources ?
- fixed investment in small business; increasing returns to education; impact of poverty on productivity through mental health/ability to focus (bandwidth)/environment
- Two ways to think about testing a poverty trap idea of that kind:
- Are the underlying mechanisms present, and is the underlying production function of the right shape?
- Do you see a persistent impact of asset on income growth/productivity that has the right shape

Figure 3: Three Transition Equations and Implied Asset Dynamics

© Clare Balboni, Oriana Bandiera, Robin Burgess, Maitreesh Ghatak, and Anton Heil. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Formalization of this argument

- For multiple Steady state, the curve that links income today to income tomorrow must intersect the 45 degree line from below.
- $y_{t}=f(g(t)$.
- At steady crossing point, we must have that the product of the two elasticity is above 1.
- This means we must pay attention quantitatively to the elasticity of the relationship between nutrition and income and between income and nutrition.

How about the purely nutrition based idea? TN Subramanian Critic to Das Gupta and Ray

- Food is too cheap: nutrition based poverty trap cannot be real
- Lottery argument: work some days, don't work some days
- Return to nutrition are not steep enough

Estimating income effect

- Best descriptive evidence: Deaton Subramanian on calories in India.
- Clear relationship between total expenditures per capita and calorie consumption:
- The relationship does not appear to be non-linear, at least in this range (despite the fact that it is probably an over estimate due to the reverse causality):
- There is also a strong relationship between price of calories and expenditures (see figure, indicating a lot of substitution towards more expensive calories: not clear that households' back is against the wall, even very poor households.
- Since the relationship is more or less log-linear, they proceed to estimate a log-linear relationship, which allows them to add control variables: - Table
- When you become 10% richer, you spend 7% more on food, and half of those goes into better food, half of those into more calories.
- Engel curse seems to fall down in India figure

Is the true relationship even lower? Jensen Miller

- Price Experiment in China: subsidize staple food in two region for randomly selected household. Survey food consumption after a few month.
- In both regions, substitution towards more expensive calories:

```
\Hunan & Guansu
```

- In one region, calories consumption actually worsens. No perceptible improvement on the other items except fat. In the other region, no change in calories consumption
- What can explain these results? What does this imply for the income effect on calorie consumption in this context? This is a sample of urban poor who may eat enough.
- Caveats: short term decrease in food prices: people may be using the windfall to have good food rather than to improve their nutritional status. Long term increase/decrease may have very different impacts.

Experimental estimates of income effects give higher numbers

- Give Directly: lump sum or monthly transfer
- Randomized evaluation.

Haushofer and Shapiro: Consumption

Haushofer and Shapiro: food expenditure elasticity

Haushofer and Shapiro: food expenditure elasticity

	Entire sample		
	(1)	(2)	(3)
	OLS	IV	Hausman p-value
Food total	$1.00^{* * *}$	$0.83^{* * *}$	$0.05^{* *}$
	(0.02)	(0.08)	
Food own production (USD)	$0.92^{* * *}$	$1.10^{* * *}$	0.53
	(0.09)	(0.31)	
Food bought (USD)	$1.03^{* * *}$	$0.87^{* * *}$	0.18
	(0.04)	(0.10)	
Cereals (USD)	$1.20^{* * *}$	$0.75^{* *}$	0.29
	(0.09)	(0.33)	
Meat \& fish (USD)	$1.17^{* * *}$	$2.07^{* * *}$	$0.01^{* *}$
	(0.09)	(0.37)	
Fruit \& vegetables (USD)	$0.95^{* * *}$	$0.76^{* * *}$	0.30
Dairy (USD)	(0.06)	(0.19)	
	$1.44^{* * *}$	$1.41^{* * *}$	0.95
Fats (USD)	(0.11)	(0.45)	
Sugars (USD)	$0.89^{* * *}$	$0.62^{* * *}$	0.32
	(0.07)	(0.24)	
Other food (USD)	$0.89^{* * *}$	$0.68^{* * *}$	0.46
	(0.08)	(0.25)	
Alcohol (USD)	$1.14^{* * *}$	$0.80^{* * *}$	0.16
Tobacco (USD)	(0.06)	(0.18)	
	$0.53^{* * *}$	-0.13	0.36
	(0.13)	(0.56)	
	$0.24^{* *}$	-0.19	0.35
	(0.09)	(0.36)	

Conclusion

- The purely nutrition base poverty trap may not be directly the most relevant (unless we have a HUGE elasticity of productivity with respect to nutrition)
- But there are many other potential source of this S-curve
- Is there a direct evidence of a poverty trap?

Fic. 2.-Regression function for \log calories and \log per capita expenditure, Maharashtra, India, 1983.

Deaton and Subramanian, Figure 3

Fig. 3.-Elasticity of per capita calories to per capita expenditure, Maharashtra, India, 1983.

4 Go Back
© University of Chicago All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Fig. 4.-Log of price per calorie and \log of per capita expenditure, Maharashtra, ndia, 1983.

TABLE 9
OLS Estimates of Dotele Log Calorie and Calorie Price Regressions with Other Cobariates

	Log Chlorefe Avajlabilety				Log Prace per Calorie				
	fll Data (I)		Within Village (2)		All Data (3)		Hijubin Village (4)		
	β	\|f		β	, 4	β	\|t ${ }^{\text {c }}$	β	$\|f\|$
Corstant	6.028	(78)			-1.3984				
la PCE	. 36655				. 3799	(25)	. 3217	(23)	
Lan houselnold size	-. 1572		-. 1680		. 0889	(6.8)	. 0661	(8.4)	
tonl 04	-. 09967	(2.2)	-. 1461	(4.1)	. 1024	(2.3)	. 1008	(3.3)	
5 m 59	. 04888	(1.2)	0321	(1.0)	-.0467	(1.2)	-. 0331	(1.2)	
\% 71094	. 08891	(1.9)	0612	(1.9)	-. 1120	(2.3)	-. 0842	(2.9)	
ton 1555	. 1636	(5.1)	. 1634	(5.9)	-. 1700	(4.3)	$-.1347$	(5.0)	
cmis+	. 1406	(3.03)	. 1213		-1365	(3.6)	$-.1074$	(2.9)	
r04	-. 1359	(3.1)	-. 1869	(4,9)	. 0460	(1.1)	.0742	(2.2)	
f59	. 01376	(4)	- .0040	(1)	-. 06648	(1-4)	-. 04776	(1.4)	
${ }_{5} \mathrm{~F} 1014$. 1144	\{2.8)	. 0679	(2.0)	-. 1168	(2.7)	-. 0873	(3.0)	
ff1555	. 0492	(1.6)	. 0514	(2.1)	. 10085	(3)	-. 0021	(1)	
Scheduled caste	-.00083	(.8)	-.0]79	(2.0)	(0)20	(2)	-.0071	(.8)	
Hindu.	.0114	(.7)	. 0302	(2.1)	- 0562	(2.6)	-.0605	(4.4)	
Buddhist	. 0237	(1.1)	. 0400	(2.0)	- 1080	(4.0)	-. 0760	(4.0)	
Selfemployed nonagriculture	. 01818	(1.0)	.00064	(4)	-. 0270	(1.1)	.0079	(.5)	
Agricultural labor	. 04333	(2.2)	. 02222	(1.4)	-0837	(3.4)	-. 0418	(2.7)	
Nionagricultural labor	. 0275	(1.1)	. 0293	(1.5)	-.0210	(8)	- .0315	(1.7)	
Selfemployed agriculture	. 0618	(3.5)	. 03889	(2.7)	$-.0610$	(2.8)	$-.0118$	(.8)	
R^{2}	.5532		. 6306		. 4254		. 6414		

 in the case of the all-daca tegressions, Eor the dusket stutare of the sampte.
© University of Chicago All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Deaton and Dreze, Figure 1

Figure 1: Calorie Engel curves, rural and urban India, 1983 to 2004-05

4 Go Back

© Economic \& Political Weekly. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Table 4. Consumption Response to the Price Subsidy

					HUNAN					
	Rice	Other Cereal	Fruit \& Veg	Meat	Seafood	Pulses	Dairy	Fats	Food Out	Non-Food
\%Subsidy(rice)	-0.235*	0.397	-0.623***	0.377	$0.482^{* *}$	-0.791 ${ }^{\text {* }}$	-0.054	-0.567*	0.117	0.200
	(0.140)	(0.355)	(0.227)	(0.415)	(0.230)	(0.476)	(0.069)	(0.313)	(0.347)	(0.200)
$\% \Delta$ Earned	$0.043^{* *}$	-0.001	$0.058 * *$	0.002	0.036	-0.052	-0.006	0.022	0.059	0.014
	(0.014)	(0.040)	(0.021)	(0.043)	(0.022)	(0.050)	(0.004)	(0.031)	(0.044)	(0.025)
\% Δ Unearned	-0.044 ${ }^{\text {* }}$	-0.087	-0.018	0.076	-0.004	-0.037	-0.021	-0.007	0.020	$0.089^{* *}$
	(0.025)	(0.065)	(0.040)	(0.071)	(0.042)	(0.075)	(0.019)	(0.055)	(0.057)	(0.038)
$\% \Delta$ People	0.89 **	$0.46{ }^{*}$	$0.63^{* *}$	0.05	-0.07	$0.48{ }^{* *}$	0.09	$0.88 * * *$	-0.18	0.15
	(0.08)	(0.19)	(0.11)	(0.24)	(0.10)	(0.23)	(0.05)	(0.16)	(0.18)	(0.13)
Constant	4.1 ***	7.5 **	-0.3	$-5.7{ }^{* *}$	-0.2	$8.8{ }^{* * *}$	0.2	-8.3 ***	-3.5	-52.6***
	(1.0)	(2.5)	(1.4)	(2.8)	(1.4)	(3.0)	(0.6)	(2.1)	(2.5)	(1.5)
Observations	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258
R^{2}	0.19	0.06	0.11	0.07	0.02	0.03	0.02	0.09	0.02	0.20

4 Go Back

\%Subsidy(wheat)	Wheat	Other Cereal	Fruit \& Veg	Meat	$\frac{\text { GANSU }}{\text { Seafood }}$	Pulses	Dairy	Fats	Food Out	Non-Food
	0.353	-0.283	0.049	0.130	-0.017	0.240	0.282	$0.507{ }^{* *}$	0.109	-0.021
	(0.258)	(0.335)	(0.190)	(0.299)	(0.017)	(0.320)	(0.207)	(0.251)	(0.276)	(0.180)
\% Δ Earned	$0.079{ }^{* *}$	-0.067	$0.061{ }^{* *}$	0.085^{*}	0.000	-0.047	-0.025	$0.091^{* * *}$	0.070	0.040
	(0.036)	(0.049)	(0.027)	(0.044)	(0.000)	(0.043)	(0.029)	(0.033)	(0.043)	(0.025)
\% Δ Unearned	-0.017	0.130	0.046	$0.314^{* * *}$	0.025	0.012	0.108	-0.110	-0.077	$0.229^{* * *}$
	(0.092)	(0.106)	(0.077)	(0.091)	(0.025)	(0.104)	(0.073)	(0.091)	(0.097)	(0.070)
\% Δ People	$0.58{ }^{* * *}$	0.52^{*}	1.01 ***	-0.10	-0.01	$0.44{ }^{* *}$	0.10	0.66	0.00	-0.04
	(0.22)	(0.29)	(0.15)	(0.28)	(0.01)	(0.18)	(0.12)	(0.15)	(0.19)	(0.19)
Constant	-26.1***	23.8 ***	11.0 ***	2.4	-0.2	$6.0{ }^{* *}$	-3.4*	7.2	$7.5^{* * *}$	$-38.2^{* * *}$
	(2.3)	(2.8)	(1.6)	(2.5)	(0.2)	(2.6)	(1.9)	(2.1)	(2.4)	(1.4)
Observations	1269	1269	1269	1269	1269	1269	1269	1269	1269	1269
R^{2}	0.08	0.06	0.07	0.05	0.03	0.06	0.03	0.07	0.05	0.17

- Go Back

Table 2. Calorie Response to the Price Subsidy

	HUNAN					GANSU				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	Full Sample (Calories)	Below Median (Calories)	Above Median (Calories)	Bottom Quartile (Calories)	Full Sample (Protein)	Full Sample (Calories)	Below Median (Calories)	Above Median (Calories)	Bottom Quartile (Calories)	Full Sample (Protein)
\%Subsidy(rice/wheat)	$\begin{aligned} & -0.206 \\ & (0.108) \end{aligned}$	$\begin{aligned} & -0.042 \\ & (0.144) \end{aligned}$	$\begin{gathered} -0.339^{* *} \\ (0.164) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.207) \end{gathered}$	$\begin{gathered} -0.096 \\ (0.133) \end{gathered}$	$\begin{gathered} 0.154 \\ (0.100) \end{gathered}$	$\begin{gathered} 0.169 \\ (0.143) \end{gathered}$	$\begin{gathered} 0.132 \\ (0.138) \end{gathered}$	$\begin{gathered} 0.070 \\ (0.261) \end{gathered}$	$\begin{gathered} 0.091 \\ (0.112) \end{gathered}$
\% Δ Earned	$\begin{aligned} & 0.031 \\ & (0.011) \end{aligned}$	$\begin{gathered} 0.026^{2} \\ (0.014) \end{gathered}$	$\begin{aligned} & 0.036^{2} \\ & (0.018) \end{aligned}$	$\begin{aligned} & 0.037^{*} \\ & (0.021) \end{aligned}$	$\begin{aligned} & 0.040 \\ & (0.013) \end{aligned}$	$\begin{aligned} & 0.028^{* *} \\ & (0.014) \end{aligned}$	$\begin{gathered} 0.027 \\ (0.021) \end{gathered}$	$\begin{gathered} 0.029 \\ (0.019) \end{gathered}$	$\begin{gathered} 0.053 \\ (0.034) \end{gathered}$	$\begin{gathered} 0.017 \\ (0.016) \end{gathered}$
\% Δ Unearned	$\begin{aligned} & -0.022 \\ & (0.020) \end{aligned}$	$\begin{gathered} -0.025 \\ (0.027) \end{gathered}$	$\begin{gathered} -0.023 \\ (0.028) \end{gathered}$	$\begin{aligned} & -0.037 \\ & (0.034) \end{aligned}$	$\begin{aligned} & -0.010 \\ & (0.023) \end{aligned}$	$\begin{gathered} 0.046 \\ (0.035) \end{gathered}$	$\begin{gathered} 0.020 \\ (0.056) \end{gathered}$	$\begin{aligned} & 0.071 \\ & (0.043) \end{aligned}$	$\begin{gathered} 0.101 \\ (0.119) \end{gathered}$	$\begin{gathered} 0.069 \\ (0.033) \end{gathered}$
$\% \Delta$ People	$\begin{aligned} & 0.94^{2.2} \\ & (0.07) \end{aligned}$	$\begin{aligned} & 1.07^{* 2} \\ & (0.08) \end{aligned}$	$\begin{gathered} 0.80 \\ (0.11) \end{gathered}$	$\begin{aligned} & 1.04 \\ & (0.10) \end{aligned}$	$\begin{aligned} & 0.93 \\ & (0.07) \end{aligned}$	$\begin{aligned} & 0.91 \\ & (0.08) \end{aligned}$	$\begin{aligned} & 1.01 \\ & (0.10) \end{aligned}$	$\begin{aligned} & 0.81 \\ & (0.12) \end{aligned}$	$\begin{aligned} & 1.08 \\ & (0.13) \end{aligned}$	$\begin{aligned} & 0.88 \\ & (0.09) \end{aligned}$
Constant	$\begin{gathered} 0.9 \\ (0.8) \end{gathered}$	$\begin{gathered} 1.6 \\ (1.1) \end{gathered}$	$\begin{gathered} 0.5^{*} \\ (1.1) \end{gathered}$	$\begin{aligned} & 2.8^{+} \\ & (1.5) \end{aligned}$	$\begin{gathered} 0.8 \\ (0.9) \end{gathered}$	$\begin{gathered} -1.9 \\ (0.8) \end{gathered}$	$\begin{gathered} 0.1 \\ (1.1) \end{gathered}$	$\begin{aligned} & -3.9 \\ & (1.1) \end{aligned}$	$\begin{gathered} 0.6 \\ (1.7) \end{gathered}$	$\begin{aligned} & -4.0 \\ & (0.9) \end{aligned}$
Observations	1258	633	625	317	1258	1269	634	635	320	1269
R^{2}	0.26	0.34	0.21	0.39	0.20	0.18	0.23	0.15	0.29	0.16

Notes: Regressions include county*time fixed-effects. The dependent variable in columns 1-4 and 6-9 is the arc percent change in household caloric intake and in columns 5 and 10 it is the arc percent change in household protein consumption. Standard errors clustered at the household level. \%Subsidy (rice/wheat) is the rice or wheat price subsidy, measured as a percentage of the average price. \% Δ Earned is the arc percent change in the household earnings from work; $\% \Delta H H$ Unearned is the arc percent change in the household income from unearned sources (government payments, pensions, remittances, rent and interest from assets); $\% \Delta$ People is the are percent change in the number of people living in the household. *Significant at 10 percent level. **Significant at 5 percent level. ***Significant at 1 percent level.

Go Back

| Food | |
| :--- | :--- | :--- | :--- |
| Alcohol/ | |
| | |
| Tobacco | |

Cote d'Ivoire	64.4%	2.7%	5.8%	2.2%
Guatemala	65.9%	0.4%	0.1%	0.3%
-	56.0%	5.0%	1.6%	5.1%
India - UP/Bihar	80.1%	3.1%	0.3%	5.2%
Indonesia	66.1%	6.0%	6.3%	1.3%
Mexico	49.6%	8.1%	6.9%	0.0%
Nicaragua	57.3%	0.1%	2.3%	4.1%
Pakistan	67.3%	3.1%	3.4%	3.4%
Panama	67.8%		2.5%	4.0%
Papua New Guinea	78.2%	4.1%	1.8%	0.3%
Peru	71.8%	1.0%	1.9%	0.4%
South Africa	71.5%	2.5%	0.8%	0.0%
Timor Leste	76.5%	0.0%	0.8%	0.9%

References I

Angus Deaton and Jean Drèze, Food and nutrition in india: facts and interpretations, Economic and political weekly (2009), 42-65.

Partha Dasgupta and Debraj Ray, Inequality as a determinant of malnutrition and unemployment: Theory, The Economic Journal 96 (1986), no. 384, 1011-1034.

Johannes Haushofer and Jeremy Shapiro, The short-term impact of unconditional cash transfers to the poor: experimental evidence from kenya, The Quarterly Journal of Economics 131 (2016), no. 4, 1973-2042.

Robert T Jensen and Nolan H Miller, Giffen behavior and subsistence consumption, American economic review 98 (2008), no. 4, 1553-77.

Edward Miguel, Poverty and witch killing, The Review of Economic Studies 72 (2005), no. 4, 1153-1172.

Shankar Subramanian and Angus Deaton, The demand for food and calories, Journal of political economy 104 (1996), no. 1, 133-162.
O
Thirukodikaval N Srinivasan, Destitution: a discourse, Journal of Economic Literature 32 (1994), no. 4, 1842-1855.

MIT OpenCourseWare
https://ocw.mit.edu/

14.771: Development Economics

Fall 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

