The capacity curve

Figure 1: The Capacity Curve The Piece Rate Income

The Piece Rate

The Piece Rate

Figure 1: The Capacity Curve The Piece Rate

Aggregate labor supply

Aggregate Labor Supply

Possible equilibria

Figure 3: Possible Equilibria

Figure 3: Possible Equilibria

The effect of non-labor income

Employment Income

Figure 4: Effect of Non-Labor Income on the Capacity Curve

Employment Income

Figure 4: Effect of Non-Labor Income on the Capacity Curve

Distribution of land

Labor supply as function of land owned

Individuals Ranked By Land Owned

Figure 6: Effective Reservation Wage

Different types of equibria

Figure 7: Types of Equilibria

Policy experiments

- Land Reform:
 - MAY improve production and employment (how?)
 - CAN improve production without reducing unvoluntary unemployment (how?)
- Is it possible to improve the lot of the poor without decreasing someone's lot?
 - The economy is PARETO EFFICIENT: it is impossible to improve the welfare of someone without decreasing the welfare of someone else
- Minimum wage
- Cash tranfer

Intra family issues

• Suppose you have a family of two, how should they share resources?

A dynamic version

- Introduce some dynamics: you can "borrow" or "invest" in your capacity
- What may happen to the capacity curve of *tomorrow* as a function of how you eat *today*?

Capacity curve with different nutrition histories

Capacity curve with different nutrition histories

Implications

- With better nutrition history, can produce more for each level of nutrition
- Long term effects of short term investments: potentially very high returns
- Returns to investing in children:
 - Long term impacts of deworming for a short period of time: 23% increase in wage for just two extra years with deworming
 - Special example: in utero nutrition.

Labor Markets

- Suppose an employer could reap the benefit of investing in a worker, what would they now want to do?
- Do they have incentives to do so in a casual labor market?
- Possible arrangements:
 - Borrowing: what is the difficulty?
 - Long term contracts (bonded labor; slavery: *Time on the cross*)

Interpretation

- Resources may not be shared equally within the family
 - Gender discrimination
 - Widows: "Witch Killings" in Africa (Ted Miguel)
 - Children and Adults: households may decide to feed adults. Combined with the dynamic version of capacity curve, this may perpetuate the cycle.

Conclusion

- Convexity (S shape) of capacity curve can generate poverty trap
- Next time: we will empirically examine the components of the capacity curve and see whether there is evidence of convexity.
- What we need for a poverty trap
 - Strong relationship between income and nutrition
 - Strong relationship between nutrition and productivity

References

• Ray, D. (1998). *Development Economics*. Princeton University Press: Princeton, NJ.

• Dasgupta, P. (1997). Nutritional status, the capacity for work, and poverty traps. *Journal of Econometrics*, *77*(1), 5-37.

From Theory to Mechanisms and Evidence

- This model wants us to think about one particular mechanism of poverty traps based on a non standard production function
- This is not the only form that poverty trap can take but it is a frequent one
- Other sources ?
- fixed investment in small business; increasing returns to education; impact of poverty on productivity through mental health/ability to focus (bandwidth)/environment
- Two ways to think about testing a poverty trap idea of that kind:
 - Are the underlying mechanisms present, and is the underlying production function of the right shape ?
 - Do you see a persistent impact of asset on income growth/productivity that has the right shape

Figure 3: Three Transition Equations and Implied Asset Dynamics

© Clare Balboni, Oriana Bandiera, Robin Burgess, Maitreesh Ghatak, and Anton Heil. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

33

Formalization of this argument

- For multiple Steady state, the curve that links income today to income tomorrow must intersect the 45 degree line from below.
- $y_t = f(g(t))$.
- At steady crossing point, we must have that the product of the two elasticity is above 1.
- This means we must pay attention *quantitatively* to the elasticity of the relationship between nutrition and income and between income and nutrition.

How about the purely nutrition based idea? TN Subramanian Critic to Das Gupta and Ray

- Food is too cheap: nutrition based poverty trap cannot be real
- Lottery argument: work some days, don't work some days
- Return to nutrition are not steep enough

Estimating income effect

- Best descriptive evidence: Deaton Subramanian on calories in India.
 - Clear relationship between total expenditures per capita and calorie consumption: • figure
 - The relationship does not appear to be non-linear, at least in this range (despite the fact that it is probably an over estimate due to the reverse causality):
 Elasticity
 - There is also a strong relationship between price of calories and expenditures (see • figure), indicating a lot of substitution towards more expensive calories: not clear that households' back is against the wall, even very poor households.
 - Since the relationship is more or less log-linear, they proceed to estimate a log-linear relationship, which allows them to add control variables: Table.
 - When you become 10% richer, you spend 7% more on food, and half of those goes into better food, half of those into more calories.
 - Engel curse seems to fall down in India figure .

Is the true relationship even lower? Jensen Miller

- Price Experiment in China: subsidize staple food in two region for randomly selected household. Survey food consumption after a few month.
- In both regions, substitution towards more expensive calories:
 Hunan Guansu
- In one region, calories consumption actually worsens. No perceptible improvement on the other items except fat. In the other region, no change in calories consumption >Table.
- What can explain these results? What does this imply for the income effect on calorie consumption in this context? This is a sample of urban poor who may eat enough.
- Caveats: short term decrease in food prices: people may be using the windfall to have good food rather than to improve their nutritional status. Long term increase/decrease may have very different impacts.

Experimental estimates of income effects give higher numbers

- Give Directly : lump sum or monthly transfer
- Randomized evaluation.

Haushofer and Shapiro: Consumption

Haushofer and Shapiro: food expenditure elasticity

40

Haushofer and Shapiro: food expenditure elasticity

		v				
	Entire sample					
	(1)	(2)	(3)			
	OLS	IV	Hausman p-value			
Food total	1.00***	0.83***	0.05**			
	(0.02)	(0.08)				
Food own production (USD)	0.92^{***}	1.10^{***}	0.53			
	(0.09)	(0.31)				
Food bought (USD)	1.03***	0.87^{***}	0.18			
	(0.04)	(0.10)				
Cereals (USD)	1.20***	0.75^{**}	0.29			
	(0.09)	(0.33)				
Meat & fish (USD)	1.17***	2.07***	0.01^{**}			
	(0.09)	(0.37)				
Fruit & vegetables (USD)	0.95^{***}	0.76^{***}	0.30			
	(0.06)	(0.19)				
Dairy (USD)	1.44***	1.41***	0.95			
	(0.11)	(0.45)				
Fats (USD)	0.89^{***}	0.62^{***}	0.32			
	(0.07)	(0.24)				
Sugars (USD)	0.89***	0.68^{***}	0.46			
	(0.08)	(0.25)				
Other food (USD)	1.14***	0.80^{***}	0.16			
	(0.06)	(0.18)				
Alcohol (USD)	0.53***	-0.13	0.36			
	(0.13)	(0.56)				
Tobacco (USD)	0.24**	-0.19	0.35			
	(0.09)	(0.36)				

Conclusion

- The purely nutrition base poverty trap may not be directly the most relevant (unless we have a HUGE elasticity of productivity with respect to nutrition)
- But there are many other potential source of this S-curve
- Is there a direct evidence of a poverty trap?

FIG. 2.—Regression function for log calories and log per capita expenditure, Maharashtra, India, 1983.

© The University of Chicago Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ Deaton and Subramanian, Figure 3

FtG. 3.—Elasticity of per capita calories to per capita expenditure, Maharashtra, India, 1983.

© University of Chicago All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

FIG. 4.—Log of price per calorie and log of per capita expenditure, Maharashtra, india, 1983.

© University of Chicago All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

		LOG CALORIE	AVAILABILITY	·····	LOG PRICE F	ER CALORIE		
	All Data (I)		Within Village (2)		All Data (3)		Within Village (4)	
	β	1	β	,¢	β	t	β	1
Constant	6.028	(78)			- 1.5934	(18)		
In PCE	.3655	(29)	.3407	(27)	.3799	(25)	.3217	(23)
In household size	1572	(14)	1630	(21)	.0839	(6.8)	.0661	(8.4)
rm04	0967	(2.2)	1461	(4.1)	.1024	(2.3)	.1008	(3.3)
rm59	.0488	(1.2)	.0321	(1.0)	0467	(1.2)	0331	(1.2)
rm1014	.0891	(1.9)	.0612	(1.9)	1120	(2.3)	0842	(2.9)
rm1555	.1636	(5.1)	.1634	(5.9)	1700	(4.3)	1347	(5.0)
rm55+	.1406	(3.0)	.1213	(2.8)	1565	(3.6)	1074	(2.9)
rf04	1359	(3.1)	1869	(4.9)	.0460	(1.1)	.0742	(2.2)
rf59	.0176	(.4)	0040	(.1)	0643	(1.4)	0476	(1.4)
rf1014	.1140	(2.8)	.0679	(2.0)	1108	(2.7)	0873	(3.0)
rf 555	.0420	(1.6)	.0514	(2.1)	.0085	(.3)	0021	i⊂tí.
Scheduled caste	0083	(.8)	0179	(2.0)	.0020	(.2)	0071	Č85
Hindu	.0114	(.7)	.0302	(2.1)	0562	(2.6)	0605	(4.4)
Buddhist	.0237	(1.1)	.0400	(2.0)	1080	(4.0)	0760	(4.0)
Self-employed nonagriculture	.0187	(1.0)	.0064	(.4)	0270	(1.1)	.0079	(.5)
Agricultural labor	.0433	(2.2)	.0222	(1.4)	0837	(3.4)	0418	(2.7)
Nonagricultural labor	.0275	(1.1)	.0293	(1.5)	0210	(.8)	0315	(1.7)
Self-employed agriculture	.0618	(3.5)	.0389	(2.7)	0610	(2.8)	0118	(.8)
R ²	.5532		.6706		.4254		.6414	,

TABLE 2 OLS Estimates of Double Log Calorie and Calorie Price Regressions with Other Covariates

Norm—Variable beginning with and demographic mion, so that e.g., r199 is the ratio of emails aged 5-9 to total household emethers and rolls is the ratio of mates date hands. So There are four later type domains, well-empired or employed, in a graduate or out, it household emethers and rolls is household emails. The widous representation contains \$60\$ domains well-able of the study, and a solution of the study empirical estable is also \$1,958 dogmain representation contains \$60\$ domains well-able of the study, and a solution of the study empirical estable is also \$1,958 dogmain in the ratio of the allocal study empirical estable is also \$1,950 dogmain. The representation represents the representation represents the representation are contracted for hierarcelef and the study emails are contracted and the study emails are contracted and the

© University of Chicago All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ Deaton and Dreze, Figure 1

Figure 1: Calorie Engel curves, rural and urban India, 1983 to 2004-05

◀ Go Back

© Economic & Political Weekly. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

					HUNAN					
	Rice	Other Cereal	Fruit & Veg	Meat	Seafood	Pulses	Dairy	Fats	Food Out	Non-Food
%Subsidy(rice)	-0.235*	0.397	-0.623***	0.377	0.482**	-0.791 [*]	-0.054	-0.567*	0.117	0.200
	(0.140)	(0.355)	(0.227)	(0.415)	(0.230)	(0.476)	(0.069)	(0.313)	(0.347)	(0.200)
%ΔEarned	0.043***	-0.001	0.058***	0.002	0.036	-0.052	-0.006	0.022	0.059	0.014
	(0.014)	(0.040)	(0.021)	(0.043)	(0.022)	(0.050)	(0.004)	(0.031)	(0.044)	(0.025)
%∆Unearned	-0.044*	-0.087	-0.018	0.076	-0.004	-0.037	-0.021	-0.007	0.020	0.089^{**}
	(0.025)	(0.065)	(0.040)	(0.071)	(0.042)	(0.075)	(0.019)	(0.055)	(0.057)	(0.038)
%ΔPeople	0.89***	0.46**	0.63***	0.05	-0.07	0.48**	0.09	0.88***	-0.18	0.15
	(0.08)	(0.19)	(0.11)	(0.24)	(0.10)	(0.23)	(0.05)	(0.16)	(0.18)	(0.13)
Constant	4.1***	7.5***	-0.3	-5.7**	-0.2	8.8***	0.2	-8.3***	-3.5	-52.6***
	(1.0)	(2.5)	(1.4)	(2.8)	(1.4)	(3.0)	(0.6)	(2.1)	(2.5)	(1.5)
Observations	1258	1258	1258	1258	1258	1258	1258	1258	1258	1258
R ²	0.19	0.06	0.11	0.07	0.02	0.03	0.02	0.09	0.02	0.20

Table 4. Consumption Response to the Price Subsidy

◀ Go Back

					GANSU					
	Wheat	Other Cereal	Fruit & Veg	Meat	Seafood	Pulses	Dairy	Fats	Food Out	Non-Food
%Subsidy(wheat)	0.353	-0.283	0.049	0.130	-0.017	0.240	0.282	0.507**	0.109	-0.021
	(0.258)	(0.335)	(0.190)	(0.299)	(0.017)	(0.320)	(0.207)	(0.251)	(0.276)	(0.180)
%ΔEarned	0.079**	-0.067	0.061**	0.085*	0.000	-0.047	-0.025	0.091***	0.070	0.040
	(0.036)	(0.049)	(0.027)	(0.044)	(0.000)	(0.043)	(0.029)	(0.033)	(0.043)	(0.025)
%∆Unearned	-0.017	0.130	0.046	0.314***	0.025	0.012	0.108	-0.110	-0.077	0.229***
	(0.092)	(0.106)	(0.077)	(0.091)	(0.025)	(0.104)	(0.073)	(0.091)	(0.097)	(0.070)
%ΔPeople	0.58***	0.52*	1.01***	-0.10	-0.01	0.44**	0.10	0.66	0.00	-0.04
	(0.22)	(0.29)	(0.15)	(0.28)	(0.01)	(0.18)	(0.12)	(0.15)	(0.19)	(0.19)
Constant	-26.1***	23.8***	11.0***	2.4	-0.2	6.0**	-3.4*	7.2	7.5***	-38.2***
	(2.3)	(2.8)	(1.6)	(2.5)	(0.2)	(2.6)	(1.9)	(2.1)	(2.4)	(1.4)
Observations	1269	1269	1269	1269	1269	1269	1269	1269	1269	1269
R ²	0.08	0.06	0.07	0.05	0.03	0.06	0.03	0.07	0.05	0.17

✓ Go Back

			HUNAN					GANSU		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	Full Sample (Calories)	Below Median (Calories)	Above Median (Calories)	Bottom Quartile (Calories)	Full Sample (Protein)	Full Sample (Calories)	Below Median (Calories)	Above Median (Calories)	Bottom Quartile (Calories)	Full Sample (Protein)
%Subsidy(rice/wheat)	-0.206*	-0.042	-0.339**	0.004	-0.096	0.154	0.169	0.132	0.070	0.091
%\Dearned	0.031	0.026*	0.036**	0.037*	0.040	0.028**	0.027	0.029	0.053	0.017
%∆Unearned	-0.022	-0.025	-0.023	-0.037	-0.013)	0.046	0.020	0.071	0.101	0.069
%ΔPeople	(0.020) 0.94***	(0.027) 1.07***	(0.028) 0.80	(0.034) 1.04***	(0.023) 0.93***	(0.035) 0.91***	(0.056) 1.01***	(0.043) 0.81***	(0.119) 1.08***	(0.033) 0.88***
Constant	(0.07) 0.9 (0.8)	(0.08) 1.6 (1.1)	(0.11) 0.5 ^{***} (1.1)	(0.10) 2.8 [*] (1.5)	(0.07) 0.8 (0.9)	(0.08) -1.9 (0.8)	(0.10) 0.1 (1.1)	(0.12) -3.9 (1.1)	(0.13) 0.6 (1.7)	(0.09) -4.0 (0.9)
Observations R ²	1258 0.26	633 0.34	625 0.21	317 0.39	1258 0.20	1269 0.18	634 0.23	635 0.15	320 0.29	1269 0.16

Table 2. Calorie Response to the Price Subsidy

Notes: Regressions include county*time fixed-effects. The dependent variable in columns 1-4 and 6-9 is the are percent change in household reduction intake and in columns 3 and 10 it is the are percent change in household protein consumption. Standard errors clustered at the household level, "Subability (rice/wheat) is the rice or wheat price subsidy, measured as a percentage of the average price. %Alemed is the are percent change in the household earnings from work, %AlfH lowared is the are percent change in the household income from uncanned sources (government payments, pensions, reinitances, rent and interest from assess); %APeople is the are percent change in the number of people living in the household. *Significant at 10 percent level. **Significant 15 percent level.

How the poor spend their money

As a Share of Total Consumption

		Alcohol/			
	Food	Tobacco	Education	Health	
Cote d'Ivoire	64.4%	2.7%	5.8%	2.2%	
Guatemala	65.9%	0.4%	0.1%	0.3%	
-	56.0%	5.0%	1.6%	5.1%	
India - UP/Bihar	80.1%	3.1%	0.3%	5.2%	
Indonesia	66.1%	6.0%	6.3%	1.3%	
Mexico	49.6%	8.1%	6.9%	0.0%	
Nicaragua	57.3%	0.1%	2.3%	4.1%	
Pakistan	67.3%	3.1%	3.4%	3.4%	
Panama	67.8%		2.5%	4.0%	
Papua New Guinea	78.2%	4.1%	1.8%	0.3%	
Peru	71.8%	1.0%	1.9%	0.4%	
South Africa	71.5%	2.5%	0.8%	0.0%	
Timor Leste	76.5%	0.0%	0.8%	0.9%	

References I

Angus Deaton and Jean Drèze, Food and nutrition in india: facts and interpretations, Economic and political weekly (2009), 42–65.
Partha Dasgupta and Debraj Ray, <i>Inequality as a determinant of malnutrition and unemployment: Theory</i> , The Economic Journal 96 (1986), no. 384, 1011–1034.
Johannes Haushofer and Jeremy Shapiro, <i>The short-term impact of unconditional cash transfers to the poor</i> . <i>experimental evidence from kenya</i> , The Quarterly Journal of Economics 131 (2016), no. 4, 1973–2042.
Robert T Jensen and Nolan H Miller, <i>Giffen behavior and subsistence consumption</i> , American economic review 98 (2008), no. 4, 1553–77.
Edward Miguel, Poverty and witch killing, The Review of Economic Studies 72 (2005), no. 4, 1153-1172.
Shankar Subramanian and Angus Deaton, <i>The demand for food and calories</i> , Journal of political economy 104 (1996), no. 1, 133–162.
Thirukodikaval N Srinivasan, <i>Destitution: a discourse</i> , Journal of Economic Literature 32 (1994), no. 4, 1842–1855.

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

14.771: Development Economics Fall 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.