14.771: Land Markets

Ben Olken

Olken

Overview

- What we're going to cover
 - Why might the allocation of land matter? Moral hazard and sharecropping
 - Why do secure property rights over land matter? Implications for investment decisions
 - This implies a tension between static efficiency (reallocation) and dynamic efficiency (property rights).

Marhsallian model of Sharecropping

- Sharecropping where laborers pay owners a share of the output is ubiquitous
- Yet economists have long recognized that it may be inefficient (e.g., Smith, Marshall)?
- Why?
- Consider a very simple model

Marhsallian model of Sharecropping

- Suppose output is F(I), concave. Tenant chooses about of input to use, I, and pays cost per unit of input, c. Could be own labor.
- Owner receives a share, α , of output.
- Tenant solves

$$\max_{I}(1-\alpha)F(I)-cI$$

• FOC is

$$F'(I) = c \frac{1}{(1-\alpha)}$$

- Since F is concave, tenant will use less input than would be optimal.
- Note a crucial assumption is that landlord gets a share of *output*, not *profits*. If it was profits then tenant would solve

$$\max_{I}(1-\alpha)\left(F(I)-cI\right)$$

and input use would not depend on α .

Sharecropping and moral hazard

Stiglitz 1974: Incentives and Risk Sharing

- The solution to the Marshallian problem is a rental contract tenant rents land from landlord for fixed rent *r*, and keeps all output
- Tenant then solves

$$\max_{I} F(I) - cI - r$$

which gives first-best input choice F'(I) = c.

- So why not do this?
- Stiglitz provides one answer: trade-off between incentives and risk-sharing
- Overview of model:
 - Farming is risky output is uncertain (e.g., pests, weather, etc).
 - Risk averse agents prefer to be insured against this risk
 - But if inputs (e.g., effort) is not contractible
 - Sharecropping contract trades off risk and incentives

- Simple two-state version.
- Cultivation effort is denoted by e
- Farmer chooses e, but landlord cannot observe e
- Effort is costly to tenant, with cost $\frac{1}{2}ce^2$
- Output:
 - with probability e: Output is H
 - with probability 1 e: Output is 0
- The farmer and landlord write a contract which specifies a payment to the farmer
 - a payment *h* if output is *H*
 - a payment *I* if the output is 0

- What is the first-best?
- First best solves

$$max_e eH - \frac{1}{2}ce^2$$

• So first best is

$$e = \frac{\pi}{c}$$

- Can landlord implement first-best?
- Landlord solves

$$max_{h,l}e(H-h) + (1-e)(-l)$$

subject to farmer's IC constraint:

$$e = \operatorname*{argmax}_{e} eh + (1-e)I - \frac{1}{2}ce^{2}$$

and farmer's IR constraint:

$$eh + (1-e)I - rac{1}{2}ce^2 > = \underline{w}$$

where \underline{w} is farmer's outside option

- Begin by solving for farmer's solution taking contract as given (IC): given *h* and *I*, what is optimal effort?
- Farmer solves

$$\max_e eh + (1-e)I - \frac{1}{2}ce^2$$

• This yields

$$e^* = \frac{h-l}{c}$$

Solution

- To implement the first best, landlord needs to set h I = H. This will be rental contract with rent R and farmer keeps output.
- Why? Need worker to face socially optimal return to effort. Note that since $e^* = \frac{h-l}{c}$, setting h l = H yields $e^* = \frac{H}{c}$.
- IR constraint pins down R so that farmer obtains w in expectation
- Recall farmer's utility is

$$eH-R-rac{1}{2}ce^2$$

evaluated at $e = \frac{H}{c}$ • So farmer's utility is

$$\frac{H^2}{2c} - R$$

Landlord sets

$$R=\frac{H^2}{2c}-\underline{w}$$

Land Markets

so that farmer obtains outside option.

10

Solution

• So final contract is

•
$$h = \underline{w} - \frac{H^2}{2c} + H$$

• $I = \underline{w} - \frac{H^2}{2c}$

- So farmer on net receives \underline{w} but exerts optimal effort.
- This contract has two issues
 - Farmer now bears all the *risk*.
 - With positive probability farmer earns $\underline{w} \frac{H^2}{2c} < 0$. What if farmer can't pay? This is a *limited liability* problem.
- Let's explore both.

Introducing risk-aversion

- What if the farmer is risk-averse?
- Assume landlord still risk-neutral but farmer has utility u(c), with u concave.
- Now, farmer's utility is to solve

$$max_eeu(h) + (1-e)u(I) - \frac{1}{2}ce^2$$

- If landlord implemented the optimal contract from before, farmer's utility would be strictly less than $u(\underline{w})$.
- Why?
- Because concavity implies $eu(h) + (1 e)u(I) < u(eh + (1 e)I) = u(\underline{w})$
- So landlord will have to compensate farmer somehow
- Should landlord reduce h I to do so, or do it all on the R dimension?

Olken

Risk-aversion

- Answer: landlord will reduce h I a bit
- Risk-averse agent prefers a certainty equivalent to uncertainty, so holding e constant cheaper in expectation for landlord to reduce h I than to increase R
- Starting from first-best *e* reducing *e* causes second-order loss of productive efficiency but first-order gain in risk-smoothing
- But, landlord will not go all the way to h = I because then e = 0
- This is the argument given for sharecropping given by Stiglitz (1974): landlords and peasants *prefer* to engage in sharecropping to share risk, even if it lowers production due to moral hazard
- Stiglitz (1974) shows that with non-contractible effort, with risk-neutral agents there is no sharecropping (full rental contract), but with risk-averse agents there is sharecropping
- Example on the pset.

Limited liability

- Let's go back to risk neutrality, and assume for the moment that outside option doesn't bind.
- But, let's impose *limited liability*. That is, you cannot impose l < 0.
- What happens to the optimal contract? Recall before we had

•
$$h = \underline{w} - \frac{H^2}{2c} + H$$

• $I = \underline{w} - \frac{H^2}{2c}$

- This contract violates limited liability because I < 0
- So what happens to I? I = 0
- What is h? Recall $e^* = \frac{h-l}{c}$. So landlord solves

$$\max_{h} e(H - h) = \max_{h} \frac{h}{c}(H - h)$$
$$h = \frac{H}{2}$$
$$e = \frac{H}{2c}$$

Olken

14

Outside options

- What happens if we add back in the constraint that farmer needs to earn at least <u>w</u>?
- Farmers's utility under the contract:

$$= \frac{h}{c}h - \frac{1}{2}c(\frac{h}{c})^2$$
$$= \frac{1}{2}\frac{h^2}{c} = \frac{1}{8}\frac{H^2}{c}$$

- If $\frac{1}{8}\frac{H^2}{c} \ge \underline{w}$, they can choose this contract. Note that the contract does not depend on \underline{w} . But also note: farmer gets information rents (i.e. receives more than \underline{w}).
- if $\frac{1}{8}\frac{H^2}{c} < \underline{w}$, landlord has to pick a contract which will give at least \underline{w} to the farmer. Picks *h* such that:

$$\frac{1}{2}\frac{h^2}{c} = \underline{w}$$

• Note that in this case increasing <u>w</u> increases effort.

Contrasting the models

- In both models risk-aversion and limited liability sharecropping emerges, and effort is less than first best
- But models differ in terms of implications of a land reform
- Under risk-aversion, even with a land reform, share-cropping may re-emerge endogenously as a way of providing insurance.
- Under limited liability, no need to have share-cropping anymore.

Evidence?

- Question: Does effort from a given farmer respond to incentives?
- How would you estimate this?
- One option would be to use farmers who farm multiple plots, some sharecropped and some owned
- Then you could estimate

$$y_i p = \alpha_i + OWNED_p + \epsilon_i p$$

where α_i is a person fixed effect and $y_i p$ is a measure of inputs used on the plot (land, fertilizer, etc)

• Good? Bad?

Evidence?

- The problem with this approach is that ownership characteristics may be correlated with plot quality
- This is, indeed, the case:

Village	Owned			Sharecropped			FIXED-RENT		
	Number of Plots	Average Plot Area (Acre)	Average Plot Value*	Number of Plots	Average Plot Area	Average Plot Value*	Number of Plots	Average Plot Area	Average Plot Value*
A	1,249	1.91	21.20	8	1.53	13.75	38 (3.1)	2.03	14.00
В	(50.4) 532 (84.1)	1.55	42.15	66	2.22	40.23	(3.1) 5 (1.0)	1.90	40.00
С	1,516	1.57	29.68	526 (35.5)	2.49	24.86	(1.0) 3 (.0)	.20	21.33
D	1,472 (77.6)	1.64	17.55	351 (22.1)	1.96	13.43	$2^{(.3)}$	4.00	10.00
E	1,133 (83.9)	2.57	22.56	(12.3)	3.73	18.94	37 (3.8)	3.57	11.70
F	568 (92.2)	3.51	15.05	57 (7.7)	2.93	10.60	1 (.1)	2.00	10.00
G	425 (67.1)	.71	39.30	138 (25.5)	.83	39.28	46 (7.4)	.72	35.20
Н	916 (80.7)	1.04	62.79	160 (16.1)	1.19	60.70	26 (3.1)	1.42	56.15
All	7,811 (80.9)	1.81	29.20	1,420 (17.5)	2.15	27.08	158 (1.6)	1.77	27.45

TABLE 2Characteristics by Tenure Status

Olken

Evidence?

- Shaban (1987) tried to solve this by controlling for detailed plot characteristics.
- Does that help?
- Still finds evidence that owned plots get more inputs
- But ideally would like to have *plot* as well as person fixed effects, i.e. estimate

$$y_i p = \alpha_i + \alpha_p + OWNED_p + \epsilon_i p$$

- I can't find a paper that does this. Why might this be?
- Even if I could find such a paper, would you be satisfied?
- What might be a better way of testing moral hazard?

Testing Moral Hazard Directly

Burchardi et al 2019: Moral Hazard: Experimental Evidence from Tenancy Contracts

- Burchardi et al run a simple experiment:
- Work with tenant farmers in Uganda
- Randomize them to receive either 50% of output, 75% of output, or 50% of output plus exogenous cash transfer (fixed for half, risky for half)
- Why the third group?

TABLE II Effects on Output						
	Outp	out, y	Yield, $\frac{y}{m^2}$			
	(1)	(2)	(3)	(4)		
High s (T1)	56.28***	56.07***	0.074**	0.073**		
	(18.52)	(18.58)	(0.031)	(0.031)		
	[0.004]	[0.004]	[0.024]	[0.027]		
High w (T2)	5.36		-0.000			
	(17.17)		(0.030)			
	[0.765]		[0.995]			
High w , safe (T2A)		18.29		0.043		
		(25.84)		(0.048)		
		[0.543]		[0.403]		
High w , risky (T2B)		-7.25		-0.043		
		(15.82)		(0.032)		
		[0.641]		[0.206]		
$H_0: T1 = T2$	0.023		0.046			
$H_0: T1 = T2A$		0.218		0.590		
$H_0: T1 = T2B$		0.001		0.002		
$H_0: T2A = T2B$		0.343		0.120		
Mean outcome (C)	95.13	95.13	0.174	0.174		
Observations	473	473	473	473		

• Note: randomized inference p-values in brackets. What is this?

	TABLE EFFECTS ON CAP	III PITAL INPUTS		
	Fertilizer (1)	Insecticide (2)	Tools (3)	Index (4)
Panel A: Extensive Margin	1			
High s (T1)	0.094	-0.010	0.086	0.201
	(0.061)	(0.053)	(0.055)	(0.133)
	[0.176]	[0.860]	[0.123]	[0.162]
High w (T2)	0.027	-0.064	0.007	-0.049
	(0.060)	(0.055)	(0.053)	(0.140)
	[0.690]	[0.261]	[0.901]	[0.739]
Within-Equation Test				
$H_0: T1 = T2$	0.310	0.320	0.142	0.080
Cross-Equations Test				
$H_0: T1 = 0$		0.283		_
$H_0: T2 = 0$		0.594		_
$H_0: T1 = T2$		0.375		_
Mean Outcome (C)	0.277	0.276	0.500	0.000
Observations	432	423	432	423
Panel B: Intensive Margin	(US\$)			
High s (T1)	1.13*	0.43	11.36^{**}	0.436***
0	(0.55)	(0.51)	(5.04)	(0.153)
	[0.056]	[0.416]	[0.039]	[0.008]
High w (T2)	0.59	-0.50	1.59	0.029
-	(0.43)	(0.47)	(4.32)	(0.126)
	[0.205]	[0.282]	[0.727]	[0.808]
Within-Equation Test				
$H_0: T1 = T2$	0.350	0.046	0.059	0.008
Cross-Equations Test				
$H_0: T\bar{1} = 0$		0.039		_
$H_0: T2 = 0$		0.274		_
$H_0: T1 = T2$		0.044		_
Mean Outcome (C)	0.96	1.81	37.81	0.000
Observations	419	413	427	402

Olken

Effects on Labor Inputs						
	Own labor (hours/week)	Paid (days/s	Index			
	(1)	(2)	(3)	(4)		
High s (T1)	0.34	-0.05	8.02^{*}	0.20		
	(1.28)	(1.98)	(4.03)	(0.12)		
	[0.781]	[0.982]	[0.065]	[0.157]		
High w (T2)	-0.03	1.06	1.79	0.05		
	(1.22)	(2.08)	(3.31)	(0.12)		
	[0.984]	[0.628]	[0.626]	[0.721]		
Within-equation test						
$H_0: T1 = T2$	0.783	0.550	0.173	0.280		
Cross-equations test						
$H_0: TI = 0$		0.277				
$H_0: T2 = 0$		0.909				
$H_0: T1 = T2$		0.575				
Mean outcome (C)	17.13	4.28	12.54	-0.00		
Observations	417	432	432	417		

TABLE IV

Olken

TABLE V EFFECTS ON CROP CHOICE							
	Maize (1)	Beans (2)	Peanuts (3)	Tomatoes (4)	Potatoes (5)		
Panel A: Extensive margin							
High s (T1)	0.112**	0.049	0.055	0.021***	0.012		
	(0.047)	(0.042)	(0.040)	(0.010)	(0.008)		
	[0.025]	[0.253]	[0.212]	[0.008]	[0.201]		
High w (T2)	0.090^{*}	0.032	0.049	-0.001	0.002		
	(0.048)	(0.041)	(0.038)	(0.004)	(0.003)		
	[0.084]	[0.447]	[0.239]	[0.805]	[0.686]		
$H_0 {:} T1 = T2$	0.652	0.720	0.899	0.013	0.217		
Mean outcome (C)	0.620	0.300	0.327	0.000	0.000		
Observations	479	479	479	479	479		
Panel B: Intensive mar	gin: number	of plants					
High $s(T1)$	159.82	4.53	330.43	41.02**	3.40		
8	(145.70)	(391.33)	(179.11)	(19.14)	(2.85)		
	[0.295]	[0.994]	[0.128]	[0.020]	[0.318]		
High w (T2)	-66.01	-85.58	-39.70	1.48	0.67		
	(131.88)	(362.02)	(154.24)	(10.48)	(1.31)		
	[0.635]	[0.841]	[0.818]	[0.912]	[0.841]		
$H_0{:}T1=T2$	0.147	0.760	0.094	0.013	0.205		
Mean outcome (C)	861.96	867.83	577.09	0.00	0.00		
Observations	479	479	479	479	479		
Panel C: Intensive margin: value of output							
High s (T1)	4.51	5.40	32.77^{***}	7.67^{*}	0.27		
	(4.85)	(6.17)	(11.04)	(4.23)	(0.24)		
	[0.384]	[0.389]	[0.003]	[0.051]	[0.447]		
High w (T2)	-2.43	1.78	4.72	-0.25	0.05		
	(4.40)	(6.84)	(9.38)	(1.89)	(0.11)		
	[0.591]	[0.820]	[0.655]	[0.917]	[0.814]		
$H_0 {:} T1 = T2$	0.152	0.613	0.065	0.074	0.318		
Mean outcome (C)	28.43	15.78	22.44	0.00	0.00		
Observations	479	479	479	479	479		

• Note: beans are the non-risky crop; maize, peanuts, and tomatoes are riskier

What is effort?

- The moral hazard model had *e* as 'unobservable effort.'
- How do you interpret this in light of the results?
- In the paper they try to say: how much of the increase in output is driven by observables (land, non-owner labor, and capital)?Answer: about half.
- What else is going on? Crop choice (increased risk-taking). Explains the rest.
- So little 'unobservable effort.'Does that change the conclusions?

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

14.771: Development Economics Fall 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.