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Problem 1 (Commuting and Congestion Taxes). A continuum of commuters of 
mass 1 must commute from Cambridge to Boston. Half of the commuters have 
flexible schedules, and their payo˙ is the negative of the total travel time. Half of 
the commuters have a tight deadline, and their payo˙ is the negative of the “worst-
case” travel time. 

There are two modes of transportation: train and car. The car always takes 
x hours if fraction x of commuters are on the road. The train takes 1 hour with 
probability 1 − �, and 2 hours with probability � (a rare delay). All commuters make 
choices before knowing whether there will be a delay. 

(a) Find the unique Nash equilibrium. What is the average commuting time? 
What is the average payo˙? 

(b) Assume that the government could mandate that each commuter takes a spe-
cific route, which is conditioned on whether they have a deadline. What allo-
cation maximizes average payo˙? 

(c) Could the government implement the allocation from (b) by asking everyone if 
they have a deadline, and then (randomly, if necessary) assigning each type of 
person to the road or train? 

[Hint: people might lie] 

(d) Assume that the government’s feasible policy is, instead, to impose a cap on 
the number of drivers on the road. If commuters want to take the road in 
excess of the cap, both the flexible and deadline types are equally likely to be 
turned away and forced to take the train. Can the government implement their 
preferred solution from (b) with a cap? If so, what cap(s) achieve this? 

(e) Assume instead that the government can impose a toll on the roads from Cam-
bridge to Boston. All commuters value their time at $10 per hour. Can the 
government implement their preferred solution from (b) with a toll? If so, what 
toll(s) achieve this? 

Solution. (a) In the unique Nash equilibrium, everyone takes the road. Each indi-
vidual has payo˙ -1. No one has an incentive to deviate — flexible people would 
get payo˙ −((1 − �)(1) + (�)(2)) = −(1 + �) on the train and tight-deadline 
people would get payo˙ −2. The average commuting time and average payo˙ 
in the equiligrium are both -1. 
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(b) The government would put all the tight-deadline individuals on the road; �/2 
mass of the flexible people on the road; and the remaining 1/2 − �/2 people 
on the train. If � is very small, of course, this is approximately the same as 
putting all the flexible people on the train. 

(c) No — all the flexible commuters will say they have a deadline so they can be 
put on the road. 

(d) The only possibility is that the government caps the road at 1/2+ �/2 drivers. 
But everyone would show up to the road, and people would have to be randomly 
turned away. There is no way to make sure that only tight-deadline commuters 
end up on the road. 

(e) Here, we would accept two answers. You could say “no” because the govern-
ment will never get �/2 of the flexible commuters onto the road. But they can 
implement something very close, if � is small. The government can charge a tax 
that makes driving prohibitively costly for flexible commuters but still attrac-
tive for tight-deadline commuters. In particular, to dissuade flexible drivers, 
the tax τ in units of “hours” must obey 1/2+ τ > 1+ � or τ > 1/2+ �. To keep 
tight-deadline commuters, the tax must obey 1/2 + τ < 2 or τ < 3/2. Thus 
any tax 1/2+ � < τ < 3/2 would put all tight-deadline commuters on the road 
and all flexible commuters on the train. In dollars, this is 5 + 10� < τ < 15. 
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Problem 2 (Easley and Kleinberg Chapter 17, Exercise 1). Consider a product that 
has network e˙ects in the sense of our model from Chapter 17. Consumers are named 
using real numbers between 0 and 1; the reservation price for consumer x when a 
fraction z of the population uses the product is given by the formula r(x)f(z), where 
r(x) = 1 − x and f(z) = z. 

(a) Let’s suppose that this good is sold at cost 1
4 to any consumer who wants to 

buy a unit. What are the possible equilibrium numbers of purchasers of the 
good? 
Solution. The payo˙ to the consumer labeled x from buying the good at cost 
c when fraction z of the population uses the product is given by (1 − x)z − c. 
So consumer x buys the product if and only if x ≤ 1 − 

z
c . The fraction of the 

population with x ≤ 1− c is given by max{1− c , 0}. Therefore, any equilibrium 
must satisfy z = max{1 − 

z
c , 0}. z = 0 is always 

z 
an equilibrium, and so are the 

roots of the equation z2 − 
z 
z + c = 0 that belong to the interval [0, 1]. When 

c = 1
4 , there are two equilibria, one with z = 0 and the other with z = 1

2 . 

(b) Suppose that the cost falls to 2
9 and that the good is sold at this cost to any 

consumer who wants to buy a unit. What are the possible equilibrium numbers 
of purchasers of the good? 
Solution. When c = 2

9 , the solutions of equation z
2 − z + c = 0 are given by 

1 2 1 2 z = and z = , so there are three equilibria with z = 0, z = , and z = .
3 3 3 3 

(c) Briefly explain why the answers to parts (a) and (b) are qualitatively di˙erent. 
Solution. In part (a), the equilibrium with z > 0 is at the point of tangency of 
the curve max{1− c , 0} to the 45-degree line, whereas in part (b), the equilibria 

z 
with z > 0 are at the intersection of the curve described by max{1 − c , 0} and 
the 45-degree line. 

z 

(d) Which of the equilibria you found in parts (a) and (b) are stable? Explain your 
answer. 
Solution. z = 0 is a stable equilibrium in both parts. The z = 1

2 equilibrium 
in part (a) is neither stable nor unstable: starting from z = 

2
1 + � for � > 0, 

best-response dynamics will bring z back to 1
2 , whereas starting from z = 1

2 + � 
for � < 0, best-response dynamics will lead z to converge to 0. In part (b), the 
z = 2

3 equilibrium is stable and the z = 1
3 is unstable. This is a consequence of 

the fact that, when c = 2 , the curve max{1 − c , 0} crosses the 45-degree line 
9 z 

from below at z = 
3
1 and from above at z = 

3
2 . 
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Problem 3 (Network Game). Fix an adjacency matrix g with entries (gij ). Consider 
the linear best-response game with best responses ( P P 

1 − δ gij xj if δ gij xj ≤ 1,∗ j 6=i j=6 i x = i 
0 otherwise. 

where δ ∈ [0, 1). Consider the case where g corresponds to the 4-player star network 
(i.e., one center node and three periphery nodes). 

(a) Assume δ < 
3
1 . Find a pure-strategy Nash equilibrim (PSNE) where all players 

take positive actions (xi > 0 for all i). 

(b) Assume 1
3 ≤ δ < 1. Find a PSNE. 

(c) Assume δ = 1. Find two di˙erent PSNE. 

(d) Now consider the 4-player line network: i.e. the network is 

(1) − (2) − (3) − (4) 

Assume δ = 
2
1 . Find an PSNE where player 1 and player 4 take one action 

x > 0 and player 2 and player 3 take another action x0 > 0. 

[Hint: such a strategy profile is an equilibrium if and only if x + δx0 = 1 and 
x0 + δx0 + δx = 1.] 

Solution. (a) Let 1 denote the center node. In the PSNE where all players take 
∗ ∗ ∗ ∗ ∗ ∗ ∗positive actions, we must have x1 = 1 − δ(x2 + x3 + x4) and x2 = x3 = x4 = 

1 − δx∗ 
1. Solving for xi 

∗ , we get 

1 − 3δ 
x ∗ 
1 = 1 − 3δ2 

, 

1 − δ∗ ∗ ∗ x2 = x = x = .3 4 1 − 3δ2 

Note that this a PSNE only if δ > 1
3 . 

(b) When 1
3 ≤ δ < 1, there is no PSNE in which all players take positive actions. 

Therefore, at least one of the players must choose xi = 0 in equilibrium. Let’s 
start by assuming that the center node chooses x1 

∗ = 0. Then the best responses 
∗ ∗ ∗of periphery nodes are given by x = x = x = 1. We only need to check that 2 3 4 

x ∗ 
1 = 0 is indeed a best response for player 1. But this is trivially the case since 

∗ ∗ ∗1 − δ(x2 + x3 + x4) = 1 − 3δ ≤ 1. 
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(c) When δ = 1, the equilibrium we found in part (b) is still an equilibrium. But 
∗ ∗ ∗ ∗ now there is also an equilibrium in which x = 1 and x = x = x = 0. To 1 2 3 4 

∗ ∗ ∗ ∗verify this note that x1 = 1−δ(x2 +x3 +x4) = 1, so player 1 is best responding, 
and δx∗ 

1 = 1 ≤ 1, so players i =6 1 are also best responding. 

(d) Using the hint, we only need to find x and x0 that solve x + δx0 = 1 and 
x0 + δx0 + δx = 1. When δ = 1

2 , the solution to the above equations is given by 
4 0 2 x = 
5 and x = 

5 . 
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