
            

14.15/6.207 Networks Problem Set #6 

Problem 1 (Morris contagion model). (a) (Exercise 9.16 in Jackson) Consider a 

network (N, g) where each node take action a ∈ {0, 1}, and action 1 is the 
optimal action for a node if and only if a fraction of at least q of his or her 
neighbors take action 1. Show that a suÿcient condition for never having a 
contagion from any group of m nodes is to have at least m + 1 disjoint sets of 
nodes that are each more than (1 − q) cohesive. 

(b) Consider a variant of the Morris contagion model where in period t = 0 some 
nodes play a = 0 and others play a = 1 (arbitrarily), and subsequently in each 
period t each node i plays a = 1 if and only if at least q = 0.5 of its neighbors 
played a = 1 in period t − 1. (The di˙erence from the model in lecture is that 
now nodes can switch from a = 1 to a = 0 in addition to switching from a = 0 
to a = 1.) Give an example where this process cycles forever. 

Solution. (a) At least one of the m + 1 disjoint sets has no initial node seeded as 
initial nodes seeded is m. Call one of these sets S. Thus, in period 0 no one in 
S is taking action 1. If at any point in time t no one in S takes action 1, then 
at time t + 1 no one in S will take action 1, by the fact that S is more than 
(1 − q) cohesive. Thus, all nodes in S never take action 1. 

(b) Consider the two-node network with one link, where at period 0 node 1 takes 
action 1 and node 2 takes action 0. This will cycle forever. 
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Problem 2. In each part of this question, we verbally describe a classic multi-agent 
decision problem. Formally express each one as a normal form game, and find all 
(pure and mixed) Nash equilibria. 

(a) Partnership: Two partners in a firm each decide whether to work or rest. Each 
partner earns $100 of profit for the firm if she works, regardless of what the 
other partner does. All profits earned are divided equally between the two 
partners. Each partner also derives a private benefit worth $75 to her from 
resting. This private benefit cannot be shared with the other partner. 

(b) Stag Hunt: Two hunters can each hunt stag or hare. If both hunt stag, they 
catch a stag and get 100 pounds of meat each. If a hunter hunts hare, she 
catches a hare and get 10 pounds of meat, regardless of what the other hunter 
does. If a hunter hunts stag while the other hunts hare, the hunter hunting 
stag catches nothing. 

(c) Chicken: Two drivers approach each other on a narrow road. Each can either 
continue or swerve. If one continues and the other swerves, the driver who 
continues gets a payo˙ of 1 for appearing brave, and the driver who swerves 
gets a payo˙ of 0 for appearing cowardly. If both swerve, both get a payo˙ of 
0. If both continue, they collide and both get a payo˙ of -10. 

(d) Rock-Paper-Scissors: Two players each decide whether to throw Rock, Paper, 
or Scissors. Rock beats Scissors, Scissors beats Paper, and Paper beats Rock. 
The winner gets $1 from the loser. No money changes hands in case of a tie. 

(e) Modified Rock-Paper-Scissors: Same as above, but now the amount of money 
won/lost is not always $1. Instead: 

Rock crushes Scissors: winner gets $10 from loser when Rock beats Scissors. 
Scissors cut Paper: winner gets $5 from loser when Scissors beats Paper. 
Paper covers Rock: winner gets $2 from loser when Paper beats Rock. 
Ties are treated as in standard Rock-Paper-Scissors. 

Solution. 

(a) Partnership: The only Nash equilibrium is (rest, rest). 

work rest 
work 100,100 50,125 
rest 125,50 75,75 
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(b) Stag Hunt: 

stag hare 
stag 
hare 

100,100 0,10 
10,0 10,10 

Both (stag, stag) and (hare, hare) are pure-strategy Nash equilibria. There is 
also a mixed-strategy equilibrium in which each player plays stag with proba-
bility p and hare with probability 1 − p. For the players to be willing to mix 
between the two actions, they must lead to the same expected payo˙ given the 
opponent’s strategy: 

1 
100p = 10 ⇐⇒ p = 

10 

(c) Chicken: 

continue swerve 
continue 
swerve 

-10,-10 1,0 
0,1 0,0 

Both (continue, swerve) and (swerve, continue) are pure-strategy Nash equi-
libria. As before, there is also a mixed-strategy equilibrium where both play 
continue with probability p. This time 

1 
(1 − p) − 10p = 0 ⇐⇒ p = . 

11 

(d) Rock-Paper-Scissors: 

rock paper scissors 
rock 

paper 
scissors 

0,0 -1,1 1,-1 
1,-1 0,0 -1,1 
-1,1 1,-1 0,0 

The only Nash equilibrium is a mixed-strategy equilibrium in which each player 
chooses each of rock, paper, and scissors with probability p = 1/3. 

(e) Modified Rock-Paper-Scissors: 
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rock paper scissors 
rock 

paper 
scissors 

0,0 -2,2 10,-10 
2,-2 0,0 -5,5 

-10,10 5,-5 0,0 

The only Nash equilibrium is a mixed-strategy equilibrium in which players play 
rock with probability p, paper with probability q, and scissors with probability 
1 − p − q. For players to be indi˙erent between the three actions, it must be 
that 

5 10 −2q + 10(1 − p − q) = 2p − 5(1 − p − q) = −10p + 5q ⇐⇒ p = , q = . 
17 17 
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Problem 3. This problem investigates “Downsian political competition” (introduced 
by Anthony Downs in his book, An Economic Theory of Democracy), a major 
paradigm in political science. 

Consider a population of voters uniformly distributed along an ideological spec-
turm from left (x = 0) to right (x = 1). Each of the candidates for a single oÿce 
simultaneously chooses a campagin platform (i.e., a point on the line between x = 0 
and x = 1). The voters observe the candidates’ choicees, and then each voter votes 
for the candidate whose platform is closest to the voter’s position in the spectrum. 

For example, if there are two candidates and they choose platforms x1 = .3 and 
x2 = .6, then all voters to the left of x = .45 vote for candidate 1 and all those to 
the right of x = .45 vote for candidate 2, so candidate 2 wins with 55% of the vote. 
Assume that any candidates who choose the same platform equally split the votes 
cast for that platform, and that ties among the leading vote-getters are resolved by 
coin flips. 

(a) Suppose there are two candidates, and that the candidates soley try to maxi-
mize their probability of getting elected (this is called oÿce-motivated candi-
dates in political science). Solve for the pure-strategy Nash equilbrium, and 
prove that it is unique. (Extra credit: prove that there is no mixed-strategy 
NE.) 

(b) Suppose there are two candidates, and that now the candidates care soley about 
the winning platform and not about who wins (this is called policy-motivated 
candidates). Specifically, Candidate 1 is a left-winger, Bernard: if the winning 
candidate chose platform x, Bernard’s payo˙ is 1 − x. Similarly, Candidate 2 
is a right-winger, Don: if the winning candidate chose platform x, Don’s payo˙ 
is x. Note that except for the payo˙s the game is exactly the same as in part 
(a). Solve for the unique pure-strategy Nash equilibrium. 

(c) Suppose candidates are oÿce-motivated as in part (a), but assume there are 
now three candidates. Find one pure-strategy NE. 

Solution. 

(a) In the Nash equilibrium, both politicians choose x = 0.5, get half of the vote, 
and are elected with probability 0.5. There are no other NE. Suppose to the 
contrary that there is a NE where at least one politician does not choose x = 0.5 
with probability 1. If there is exactly one such politician, then she wins with 
probability < 0.5. But if she deviates to x = 0.5, then she wins with probability 
0.5, which is a contradiction. If instead neither politician chooses x = 0.5 with 
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probability 1, then note that one of them wins with probability ≤ 0.5. But 
if she deviates to x = 0.5, then she wins with probability > 0.5, which is a 
contradiction. 

(b) The unique pure-strategy NE is again for both politicians to choose x = 0.5. 
It is easy to see that this is a Nash equilibrium. If Liz deviates to x 6= 0.5, 
then she loses the election for sure and so the implemented policy continues to 
be 0.5. Therefore, deviating to x 6= 0.5 is not profitable for Liz. By a similar 
argument Don does not have a profitable deviation. 

(c) There are many Nash equilibria. Here is one example: player 1 locates at 0.4, 
player 2 at 0.7, player 3 at 0.8. Player 1 wins with 55% of the vote. Players 
2 and 3 do not have profitable deviations: if either of them jumps over player 
1, the other one of them wins; anyone sandwiched in between the other two 
players cannot get more than 20% of the vote, and anyone located to the right 
of the other two candidates cannot get more than 30% of the vote. 
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Problem 4. Consider the example of ineÿcient routing with non-linear latency 
from Lecture 12; there are two links from origin to destination, with l1 (x) = xk and 
l2 (x) = 1, where k is a positive number. 

(a) Find the socially optimal routing and the equilibrium routing, and calculate 
the price of anarchy/stability. (Your answers will depend on k.) 

(b) Now suppose that the mass of traÿc that must be routed from origin to des-
tination is 2 rather than 1 (while the functions l1 (·) and l2 (·) are unchanged). 
Again, find the socially optimal routing and the equilibrium routing, and cal-
culate the price of anarchy/stability. 

(c) Verify that, for any value of k, the total equilibrium delay with traÿc 1 is less 
than the total socially optimal delay with traÿc 2. 

In fact, this is a general phenomenon: for any network, the socially optimal 
routing is worse than the equilibrium routing with half as much traÿc. (You 
do not have to prove this.) Can you think of any implications of this fact for 
how society can best control traÿc? 

Solution. (a) The equilibrium is all agents taking link 1. If any agents are on link 
2, then the cost of link 1 is xk < 1 and those on link 2 would rather move to 
link 1. 

The socially optimal routing level x is given by 

min x(x k) + (1 − x)1. 
x∈[0,1] � � 1 

k . TheThe first order condition is k + 1(xk) − 1 = 0, which gives x = 1 
k+1 

total cost under this flow x can be written 1 + x(xk − 1) which gives the total 
cost under the optimum is � � � � � �1 1 

1 k 1 k 1 k 

1 + − 1 = 1 − . 
k + 1 k + 1 k + 1 k + 1 

As there is only one equilibrium the price of anarchy and price of stability are 
the same and equal to � � 

k 1 
1 
k 

!−1 

1 − . 
k + 1 k + 1 
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(b) The equilibrium is given by a mass of one going through each of the two routes. 
This gives everyone a cost of 1, for a total cost of 2 under equilibrium. 

The socially optimal routing level x is given by 

min x(x k) + (2 − x)1 
x∈[0,2] 

which gives the same first order condition as in part (a). Thus, the optimal is � � 1 
kagain x = 1 . The overall cost just increases by 1, so we have the total �k+1� 1 

kcost is 2 − k 1 
k+1 k+1 . And the price of anarchy/stability is 

� � 
k 1 

1 
k 

!−1 

2 2 − . 
k + 1 k + 1 

(c) We need to show that � � 
k 1 

1 
k 

1 < 2 − . 
k + 1 k + 1 � � 

Note we have k > 0, so 1 < 1 and 1 
k+1 k+1 

1 
k < 1. This gives 

� � 
k 1 

1 
k 

2 − > 2 − 1 = 1. 
k + 1 k + 1 

This means if we can cut the traÿc in half the equilibrium will be better 
than the original cost. This could be achieved through carpooling or through 
staggering work times to cut down on total traÿc at any time. 
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