
             
   

14.15/6.207 Networks Problem Set #5 

Problem 1 (Adoption Curves). Recall that the equation for the adoption curve in 
the Bass model is 

−(p+q)t1 − e 
F (t) = −(p+q)t1 + q e 

p 

where p is the innovation rate and q is the imitation rate. 

1. Verify the claim made in lecture that F (t) is concave if p > q and is S-shaped 
(i.e., convex for sufciently low t and concave for sufciently high t) if p < q. 

2. At what time t is the adoption rate F ′ (t) the highest? Call this time t ∗ (p, q). 

3. Show that t ∗ (p, q) is always decreasing in p, but can be increasing or decreasing 
in q depending on parameters. Explain what are the two opposing forces that 
lead to the ambiguous dependence of t ∗ (p, q) on q. 

Solution. 

1. The second derivative of F is given by � � −(p+q)t −(p+q)t − p(p + q)3e p qe ′′ (t) =F . 
(qe−(p+q)t + p)3 

If p > q, then qe−(p+q)t − p is negative for all t. If p < q, then qe−(p+q)t − p is 
positive when t < t0 := (log q − log p)/(p + q) and is negative when t > t0. 

2. If p < q and the curve is “S”-shaped, the adoption rate is the highest at the 
′′ (t ∗) = 0:time t ∗ when F 

log q − log p
t ∗ (p, q) = . 

p + q 

which is also t0 from above. If p > q, and the curve is concave, the adoption 
rate is the highest when t = 0. 

3. Let’s focus on the S-shaped case. The derivative of t ∗ with respect to p is given 
by −1/(p(p + q)) + log(p/q)/(p + q)2 , which is always negative since p < q. The 
derivative with respect to q is given by 1/(p(p + q)) + log(p/q)/(p + q)2 , which 
can be negative or positive depending on the values of p and q. In the concave 
case, of course, t ∗ is fxed and insensitive to changes in p and q 
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Problem 2 (Containment in the SIR Model). Consider the SIR model with basic 
reproduction number R0. Suppose that at the beginning of the epidemic, the gov-
ernment vaccinates fraction π of the population, which ensures that they never get 
sick. (That is, vaccinating an individual immediately moves her to the “removed” 
state.) 

1. Write down the dynamic equations and initial conditions for the SIR model as 
a function of R0, π, and an initial infected fraction ι. 

2. What fraction of the population ever gets sick in the course of the epidemic? 

3. Consider the model with γ = 1, π = 0.5, and ι arbitrarily small (so you can 
treat it as zero in the answer to 2). Suppose that a government in this world 
is choosing a policy to minimize the number of indviduals who get sick over 
the course of the epidemic. Due to limited funds, the government must choose 
between two options. The frst is increasing testing, which permanently reduces 
the value of R0 by 20%. The second is increasing vaccination, which increases 
the value of π to 0.75. Show numerically for what values of R0 the government 
should invest in testing rather than vaccination. 

Solution. 

1. The dynamic equations are the same as the baseline model — each suspectible 
person has probability I(t) of interacting with an infected person and condi-
tional probability γR0 of being infected given that meeting. Thus, 

Ṡ(t) = −γR0S(t)I(t) 

İ(t) = γR0S(t)I(t) − I(t) 

Ṙ(t) = γI(t) 

The initial conditions, however, are diferent from the standard model from 
lecture. They are 

S(0) = 1 − ι − π 

I(0) = ι 

R(0) = π 

which reduce to the case studied in lecture when no one is vaccinated or π = 0. 

2. We combine the frst and third diferential equation to write 

Ṡ(t) ˙= −R0R(t)
S(t) 
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The solution to this diferential equation with initial conditions S(0) = 1−ι−π 
and R(0) = π 

−R0(R(t)−π)S(t) = (1 − ι − π)e 

Defne S∞ = limt→∞ S(t) and R∞ = limt→∞ R(t). Observe that S∞ = (1 − ι − 
−R0(R∞−π)π)e . Moreover, since I∞ = limt→∞ I(t) = 0 for the same reason given 

in the lecture notes, we have that R∞ is the solution to the following equation 

−R0(R∞−π)R∞ = 1 − S∞ = 1 − (1 − ι − π)e 

We fnally note that among the recovered at t, only R(t) − π had the disease. 
Let’s call D(t) = R(t) − π the number of people at t who actually had the 
disease, defne D∞ = R∞ − π, and then re-write the above as 

−R0D∞D∞ = 1 − π − (1 − ι − π)e 

after subtracting π from both sides. More compactly, as ι ↓ 0, this is 
−R0D∞ )D∞ = (1 − π)(1 − e (1) 

We can now numerically answer our question. For a given value of R0, we 
can solve (1) under the baseline with π = 0.5, the vaccinated scenario where 
π = 0.75, and the testing scenario where R0 = 0.8R0. Note that (1) always has 
a trivial solution D∞ = 0. If a non-trivial solution exists in (0, 1), that is the 
relevant long-run limit when a small but positive number of people are initially 
infected. If a non-trivial solution does not exist, the disease immediately dies 
out. 

Figure 1 shows the results for R0 ∈ [0, 10]. In this calibration, vaccination 
always beats testing. 

Why? [Note: for credit, you did not have to explain this] One way to think 
about this is to explore how to right-hand-side of (1) is shifted by changes in 
R0 and π. In particular, defne 

−R0D∞ )f(D∞; π, R0) = (1 − π)(1 − e 

and observe that 
−R0D∞ ) −R0D∞fπ = −(1 − e fR0 = D∞(1 − π)e 

Mechanically, the fxed-point of (1) is going to go down more when this whole f 
curve shifts down more.1 Vaccination has a large efect on this curve even when 

1You could also convince yourself this by implicitly diferentiating (1). 
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Figure 1: Efectiveness of Policies 

D∞ is very low; while testing only shifts the curve down when D∞ is relatively 
high. This makes sense — testing only helps when some people are sick, while 
vaccination forestalls this completely. That said, this “intuitive explanation” is 
not a bulletproof policy recommendation — the devil is in the details of just 
how much a policy can move π or R0. 

4 



MIT OpenCourseWare 
https://ocw.mit.edu 

14.15 / 6.207 Networks 
Spring 2022 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms 

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page




