
              
              

 

                 
   

14.15/6.207 Networks Problem Set #4 

Note: We are including extra bonus questions to let students work on types of 
prob-lems that interest them more. There is no expectation that you do all the 
bonus problems. 

Problem 1 (Giant Component). Let p (n) = λ/n for all n: that is, expected degree is 
held fixed at λ. 

(a) Suppose that as n → ∞ there is a giant component that fills exactly half the 
network. What is λ? 

(b) For the same random graph, what is the probability that a node has degree 
exactly 5? 

(c) Calculate the fraction of nodes in the giant component that have degree exactly 
5. [Hint: for any node i, by Bayes’ rule, this equals 

Pr (di = 5) Pr (i in giant component|di = 5) 
. 

Pr (i in giant component) 

You should be able to compute all of these terms.] 

(d) Give an intuitive explanation for the di˙erence between the answers to parts 
(b) and (c). 

Solution. 

(a) Recall from lecture 

q = 1 − e −λq 

where q is the fraction of nodes in the giant component. Then 

ln(0.5)0.5λ 0.5λ0.5 = 1 − e ⇐⇒ e = 0.5 ⇐⇒ λ = − ≈ 1.3863. 
0.5 

(b) The degree distribution of a node i in the ER model converges to a Poisson 
random variable di with parameter λ, which from part a) λ ≈ 1.3863. 

e−1.3863(1.3863)5 

P(D = 5) ≈ = 0.0107. 
5! 
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(c) From the problem statement P(i in giant component), and from b) we have 
P(di = 5) = 0.0107. Now to think about γ := P(iin giant component|di = 5). 
Now, γ = 1−P(no neighbor of i in giant component|di = 5). We can think of i 
being the last node added. At this time n− 

2
1 nodes are in the giant component. 

We can think of choosing i’s neighbors as picking 5 nodes from the n − 1 nodes 
without replacement. When n is large we do not need to consider the without 
replacement issue. So P(no neighbor of i in giant component|di = 5) = 

� 
1 
�5 .

2 
So the overall probability is given by � �� �5 

0.0107 1 − 1
2 

≈ 0.0207 
1/2 

(d) In part b) we calculate the proportion of nodes that have degree 5 in the whole 
graph, whereas in part c) we calculate the proportion of nodes that have degree 
5 in the giant component. It is much more likely that a node has degree five 
in the giant component than it is just any node has degree 5. 
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Problem 2 (Configuration Model). Consider the configuration model with degree 
distribution P (d) = 2−(d+1) for all d ≥ 0. P∞(a) Show that the degree distribution is correctly normalized, meaning that d=0 P (d) = 

1. 

(b) What is the average degree of a node? 

(c) What is the average number of distance-2 neighbors of a node? 

(d) Does the network have a giant component? Why or why not? 

Solution. 

(a) We’ll prove by induction that 
TX 

2−(d+1) = 1 − 2−(T +1) . (1) 
d=0 

For T = 0 we have 2−1 = 1 − 2−1 as needed. Assuming (1) holds for T − 1, we 
have that XT T −1X 

2−(d+1) 2−(d+1) + 2−(T +1)= 
d=0 d=0 

= 1 − 2−T + 2−(T +1) 

= 1 − 2−(T +1). 

Thus 
∞X n o 

2−(d+1) 1 − 2−(T +1)= lim = 1. 
T →∞ 

d=0 

(b) We can compute that the average degree hdi satisfies X∞ ∞X 
d2−(d+1) d2−(d+1)hdi = = 

d=0 d=1 
∞X 

= (d0 + 1)2−(d
0+2) (d0 = d − 1) 

d0=0" # 
∞ ∞

1 X 
d02−(d

0+1) 
X 

2−(d
0+1)= + 

2 
d0=0 d0=0� �1 

= hdi + 1 
2 
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using our result from part a. in the last step. We can then solve to obtain 
hdi = 1. 

(c) We know from lecture (via the branching approximation) that the expected 
number of distance-two neighbors is given by hd2i−hdi. We can then similarly 
compute 

∞ ∞X X 
d22−(d+1) d22−(d+1)hd2i = = 

d=0 d=1 
∞X 

= (d0 + 1)22−(d
0+2) 

d0=0" # 
∞X1 

= (d02 + 2d0 + 1)2−(d
0+1) 

2 �d0=0 �1 
= hd2i + 2hdi + 1 

2 

Plugging in our value for hdi from part b. and solving gives hd2i = 3. 

(d) Since 3 = hd2i/hdi > 2, we will have a giant component. 
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Problem 3 (Small World Model). Consider a ring network with n nodes in which 
each node is connected to its neighbors k steps or less away. There are two popular 
variants of the “small world” model: 

Edge-adding For each pair of nodes that are not linked in this network, add a new 
edge between them with probability p/n, independently across pairs. 

Edge-rewiring For each edge (i, j), with independent probability p, replace this 
edge with an edge chosen uniformly at random from the set of edges not present 
in the graph. 

(a) Find the degree distribution of the edge adding model. (It suÿces to find the 
asymptotic degree distribution for a given node.) 

(b) Show that when p = 0, the overall clustering coeÿcient in both models is given 
by 

3k − 3 
Cl(g) = . 

4k − 2 

(c) (Bonus-3 points) Show that when p > 0, the overall clustering coeÿcient in 
the edge rewiring model satisfies 

3k − 3 3k − 3 
(1 − p)3 ≤ Cl(g) ≤ (1 − p)3 . 

4k 4k − 2 

(d) (Bonus-3 points) Write a program to generate small world networks according 
to the edge adding model with n = 100, k = 5, and p = 0.1. Compute the 
realized overall clustering coeÿcient and see if it obeys the bounds for the edge 
rewiring model from part (c). 

Solution. 

(a) We will first fix a vertex v and compute the limit 

p ∗ (d) = lim Pp/n(dv = d). 
n→∞ 

Then, to illustrate how this corresponds to a statement about the (random) 
degree distribution the graph, we will prove that as n →∞, the proportion of 
vertices with degree d converges in probability to p ∗(d). 

For the first statement, we know that each vertex v has degree 2k before any 
adges are added, and to this we add n − 2k − 1 edges independently with 
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probability p/n. As n → ∞ the probability that the number of additional 
edges is ̀  is given by � �� �` � �n−2k−1−` n − 2k − 1 p p
Pp/n(dv − 2k = `) = 1 − 

` n n� �� 
` �� �n−2k−1−`(n − 2k − 1)(n − 2k − 2) · · · (n − 2k − 1 − `) p p 

= 1 − 
n ̀ `! n| {z } | {z } 

converges to e−pconverges to 1 

` −pp e → = Poisson(p, ̀ )
`! 

This is called the “Poisson limit theorem.” Thus, the degree of each vertex has 
asymptotic distribution p ∗(d) = Poisson(p, d − 2k). 

To show the asymptotic proportion of vertices with degree d is exactly p ∗(d), let 
Nd denote the number of vertices with degree d. We know that Ep/n[Nd]/n → 
p ∗(d) by the above. Next, we have that � � � � 

2Pp/n |Nd − Ep/n[Nd]| ≥ �n = Pp/n |Nd − Ep/n[Nd]|2 ≥ �2 n h i� 
≤ Ep/n |Nd − Ep/n[Nd]|2 (�2 n 2) (Markov’s inequality) � �

Ep/n[Nd 
2] Ep/n[Nd]

2 1 Ep/n[Nd 
2] ∗ (d)2 = − → − p . 

�2 2 �2 2 �2 2n n n 

This is called “Chebyshev’s inequality,” and it tells us that the probability 
of Nd/n di˙ering from p ∗(n) by more than � will go to zero if Ep/n[Nd 

2] = 
p ∗(d)2n2 + o(n2). To verify this, let Di be 1 when node i has degree d, and note 
that " # 

n nX X 
Ep/n[Nd 

2] = E DiDj = E[DiDj ]. 
i,j=1 i,j=1 

If we can show E[DiDj ] = p ∗(d)2 +o(1) then the sum will be equal to n2p ∗(d)2 + 
o(n2) as needed. The only dependence between Di and Dj comes from whether 
there is an (i, j) edge or not. Conditional on there being an (i, j) edge, the 
degrees of both nodes are independent with distribution Poisson(p, d − 2k − 
1) = p ∗(d − 1). Conditional on there not being an (i, j) edge, the degrees are 
independent with distribution p ∗(d). Thus, if Eij is the event that there is an 
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(i, j) edge, we have 

E[DiDj ] = E[DiDj |Eij ]P(Eij ) + E[DiDj |Ē 
ij ]P(Ē 

ij ) � �2 p � � p p(2p ∗(d) + 1) 
= p ∗ (d) + 1 + 1 − p ∗ (d)2 = p ∗ (d)2 + 

n n n 
= p ∗ (d)2 + o(1). 

We conclude that for each d, the proportion of nodes with degree d converges 
in probability to p ∗(d) as n →∞. 

(b) Fix a node v. Let’s start by counting the number of open triplets centered at 
v, i.e. triples of distinct nodes (a, v, b) with edges (a, v) and (v, b). 

There are 2k nodes a that are connected to v. For each choice of a there are 
2k −1 nodes other than a that are connected to v. So the total number of open 
triplets centered at v is 2k(2k − 1). 

To go from this number to the total number of open triplets, note that (1) 
by symmetry of the graph there are 2k(2k − 1) open triplets centered at each 
node v, and (2) each open triplet is centered at exactly one node. So the total 
number of open triplets is exactly n · 2k(2k − 1). 

Now let’s count the number of closed triplets centered at v, i.e. triples of nodes 
(u, v, w) where every pair has an edge. 

In order to do this, note that for each 1 ≤ ` ≤ k there are exactly 2 nodes at 
distance ̀  from k. If u has distance ̀  from v, the number of nodes that are 
connected to both u and v is 2k − ` − 1: k − 1 nodes on the same side of v as 
u and k − ` nodes on the oppisite side of v. Putting this together, we have 

k kX X 
2(2k − ` − 1) = 4k2 − 2k − ` 

`=1 `=1 

= 4k2 − 2k − k(k + 1) = k(3k − 3) 

Again, since each closed triple is centered at exactly one node and there are 
k(3k − 3) closed triples centered at each node, the total number is n · k(3k − 3). 

Dividing the two numbers gives the desired 3k−3/4k−2. 

(c) Note that there are exactly nk edges to begin with. Let’s compute the expected 
number of times that a new triangle forms. There are O(n) open triangles, 
and the probability that a given edge gets rewired to a given open triangle is 
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n �−1 

2 = O(1/n2), so the probability of getting rerouted to any open triangle 
is O(1/n) by a union bound. Since there are O(n) edges, the total expected 
number of new triangles is O(1). 

On the other hand, the expected number of triangles that remain triangles is 
exactly (1 − p)3 times the previous number of triangles. 

Similarly, we can count that there are initially 2(2k − 1) open triplets using 
a given edge. Once we reroute it, if we do, there are 2(2k) + 2E new open 
triplets formed, where 2E is the number of additional edges rewired to one of 
the same vertices. For each edge e, there are kn − 1 other edges, each rewired 
with probability p. The probability each gets rerouted to share a vertex with 
e is O(1/n2). Thus E[E] = O(1/n) = o(1). Thus the number of new potential 
triangles is at most � � 

4k + o(1)
2nk(4k − 2) ≤ 2nk(4k − 2) ≤ 2nk4k. 

4k − 2 

As n →∞ we get 

2nk(3k − 3)(1 − p)3 + O(1) 2nk(3k − 3)(1 − p)3 + O(1)≤ Cl(g) ≤ 
2nk(4k) 2nk(4k − 2) 

The left hand side converges to (3k − 3)(1 − p)3/4k and the right hand side 
converges to (3k − 3)(1 − p)3/(4k − 2). 
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