
           
                      

            

        

14.15/6.207 Networks Problem Set #3 

Problem 1 (Long-Run Consensus). Consider the DeGroot learning model with N 
agents with initial belief vector x (0) = (x1 (0) , . . . , xN (0)) and an N × N , non-
negative, row stochastic matrix T such that, for every period t, we have 

x (t) = Tx (t − 1) . 

(a) Suppose that N = 3 and   

3 1 1 
5 5 5 

1 1 1 
4 2 4 

1 20 
3 3 

T = 

What properties of this matrix guarantee that, for any initial belief vector x (0), 
the limit belief x ∗ = limt→∞ x (t) is well-defned? Compute x ∗ as a function of 
x (0). 

Solution. The right-stochastic matrix T is aperiodic and strongly connected, 
so we know from lecture that there is a unique limiting belief x ∗ that depends 
only on x(0). Moreover, it is given by s⊤x(0) where the weight vector s solves 

sT = s ⇐⇒ s(T − I) = 0 P 
and also satisfes i si = 1. Solving this linear system of equations by hand, or 
plugging them into Wolfram Alpha (or a similar tool) gives us s = ( 5 , 8 , 9 ).

22 22 22 

(b) Suppose that N = 6 and    

1 1 1 0 0 0
2 6 3 

3 2 0 0 0 0
5 5 

3 4 4 0 0 0
11 11 11 

 

T = . 
1 20 0 0 0
3 3 

4 3 60 0 0 
13 13 13 

4 30 0 0 0
7 7 

∗Without doing any computations, does x 
not? If so, which components of the vector x 

= limt→∞ x (t) exist? Why or why 
∗ will be identical, and which 

components may difer? 
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Solution. x ∗ exists because the network can be broken into two strongly con-
nected components, and the updating matrix is aperiodic. The frst three com-
ponents of x ∗ will be identical, as will the last three components, but typically 
the frst three components will be diferent from the last three components. 

(c) Prove that, for any N , if there exists an agent i such that Tii = 1 and Tji > 0 
for all j ̸= i, then xj 

∗ ≡ limt→∞ xj (t) is well-defned and equal to xi (0) for all 
j ̸= i. 
[Hint: Let ∆(t) = maxj∈N |xi (t) − xj (t)| and let T = minj ̸=i Tji. Prove that 
∆(t + 1) ≤ (1 − T )∆ (t) for all t. Show that this implies that each xj (t) must 
converge to xi (0) as t →∞.] 
Solution. As suggested by the hint, let’s defne T = mink Tki > 0 and ∆(t) = 
maxk |xk(t) − xi(t)|. Firstly, notice that since Tii = 1 and the rows of T sum 
to 1, Tij = 0 for j ̸= i and we must have xi(t) = xi(0) for all t by matrix 
multiplication. Then we can compute 

|xi(t + 1) − xj (t + 1)| = |xi(t) − xj (t + 1)| 
= |xi(t) − (Tx(t))j | 

nX 
= xi(t) − Tjkxk(t) 

k=1 P 
Since n

k=1 Tjk = 1 this can be rewritten as 

nX 
= Tjk(xi(t) − xk(t)) 

k=1 

By the triangle inequality |a + b| ≤ |a| + |b|, this is at most 
nX 

≤ Tjk|xi(t) − xk(t)|
k=1 P 

Since Tjk = 1 − Tji ≤ 1 − T and ∆(t) = maxk |xk(t) − xi(t)|, this is atk ̸=i 
most 

≤ (1 − T )∆(t). 

Since the above holds for every j ̸= i, we can deduce that ∆(t+1) ≤ (1−T )∆(t) 
which means that, since (1 − T ) < 1, we must have ∆(t) ↓ 0 as needed. We 
conclude that for each k, xk(t) → xi(0) as t →∞. 
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Problem 2 (Clustering). Consider the Erdös-Renyi model with n > 1 nodes and 
link probability p(n), which changes as we add nodes. Let p (n) = λ/n for all n. 
Observe that expected degree is held fxed at λ. 

(a) Show that as n →∞ the expected number of triangles in the network converges 
to 1

6 λ
3 . (Recall that a triangle is a triple of nodes (i, j, k) such that gij = gik = 

gjk = 1.) Thus, the expected number of triangles hardly depends on n (once n 
is large). Explain how this is possible. � � 
Solution. There are n possible triangles. P(gij = 1, gjk = 1, gik = 1) = 

3 � 
λ 
�3P(gij = 1)P(gjk = 1)P(gik = 1) = 

n � � � �3 
n λ3 n(n − 1)(n − 2) λ λ3 

= → as n →∞. 
33 n 6 n 6 

This is constant because the number of triangles is O(n3) and the probability � � 
of all three edges occurring in any triangle is O 

n 
1 .3 

(b) Show that for large n the expected number of connected triples in the network 
is approximately 1

2 nλ
2 . (Recall that a connected triple is a triple of nodes 

(i, j, k) such that gij = gik = 1.)� � 
Solution. There are n 

3 possible triples. For any i, j, k let Iijk be an indicator 
random variable that is 1 if i, j, k are a connected triple and 0 otherwise. Note� � � �2 � �

3 λ 3Iijk takes value 1 with probability , where comes from needing two 
2 n 2 

of the three edges to be present. So now for the entire graph we have " # 

E 
X 

Iijk 

� �� � � �2X n 3 λ 1 
= E[Iijk] = ≈ nλ2 

3 2 n 2 
i,j,k i,j,k 

for large n. 

(c) Defne the clustering coefcient for a random network to be the probability 
that two neighbors of a node are also neighbors of each other. Compute the 
clustering coefcient for the Erdös-Renyi model with p (n) = λ/n. 

Solution. In the ER model edges are independently realized so the clustering 
coefcient is λ . 

n 
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Problem 3 (Phase Transition). Consider again the Erdös-Renyi model with n > 1 
nodes and link probability p(n). Let A denote the event that node 1 has at least 
l ∈ N neighbhors. Show that there is a phase transition for this event with the 
threshold function t(n) = λ/n for some λ > 0. [Hint: You may need to use the fact � �nthat 1 + 

n
x ≈ exp(x) when n is large for any x ∈ R.] 

Bonus : Using a computer language of your choice, code a program that simulates 
Erdös-Renyi graphs with n nodes and connection probability p. Use a simulation 
with this program to illustrate the phase transition as p(n) crosses the threshold 
t(n) = 1/n. If you “inspect” the networks produced, what other properties do you 
notice on either side of the threshold? 

Solution. We need to prove that for any l > 0: 
(i) P(A|p(n)) → 0 if p(n) → 0. 

t(n) 

(ii) P(A|p(n)) → 1 if p(n) →∞. 
t(n) 

First assume that p(n) → 0. Denote the degree of node 1 by d1. Since p(n) → 0,
t(n) t(n)

the expected degree satisfes 

p(n) p(n) r(n − 1)
E[d1] = (n − 1)p(n) = t(n)(n − 1) ≈ . 

t(n) t(n) n 

Therefore, E[d1] → 0. This implies that P(A|p(n)) → 0, since otherwise the expected 
degree would be strictly positive. 

p(n) rNext assume that → ∞. It follows that p(n) > for sufciently large n. 
t(n) n 

The probability that A does not occur can bounded as follows: 

l−1 l−1 � �X X n − 1
P(Ac|p(n)) = P(d1 = k|p(n)) = p(n)k(1 − p(n))n−1−k 

k 
k=0 k=0 

l−1 � �X n − 1 ≤ t(n)k(1 − t(n))n−1−k 

k 
k=0 

l−1 l−1X k X� �k � �n−1−k nkr r ≤ t(n)k(1 − t(n))n−1−k n 
= 1 − 

k! n n k! 
k=0 k=0 

l−1X kr ≈ exp(−r) . 
k! 

k=0 

The second line follows because if the graph was generated using t(n) instead of 
p(n), each link would be present with smaller probability and hence the probability 
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that node 1 has less than l neighbors (the event Ac) would be larger. Since the 
above equation is true for any r ∈ R+ , considering arbitrarily large r, it follows that 
P(Ac|p(n)) → 0, or equivalently that P(A|p(n)) → 1. 
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