Problem 1 (Long-Run Consensus). Consider the DeGroot learning model with N agents with initial belief vector $x(0)=\left(x_{1}(0), \ldots, x_{N}(0)\right)$ and an $N \times N$, nonnegative, row stochastic matrix T such that, for every period t, we have

$$
x(t)=T x(t-1) .
$$

(a) Suppose that $N=3$ and

$$
T=\left(\begin{array}{ccc}
\frac{3}{5} & \frac{1}{5} & \frac{1}{5} \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
0 & \frac{1}{3} & \frac{2}{3}
\end{array}\right)
$$

What properties of this matrix guarantee that, for any initial belief vector $x(0)$, the limit belief $x^{*}=\lim _{t \rightarrow \infty} x(t)$ is well-defined? Compute x^{*} as a function of x (0).
(b) Suppose that $N=6$ and

$$
T=\left(\begin{array}{cccccc}
\frac{1}{2} & \frac{1}{6} & \frac{1}{3} & 0 & 0 & 0 \\
\frac{3}{5} & \frac{2}{5} & 0 & 0 & 0 & 0 \\
\frac{3}{11} & \frac{4}{11} & \frac{4}{11} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{3} & 0 & \frac{2}{3} \\
0 & 0 & 0 & \frac{4}{13} & \frac{3}{13} & \frac{6}{13} \\
0 & 0 & 0 & \frac{4}{7} & 0 & \frac{3}{7}
\end{array}\right) .
$$

Without doing any computations, does $x^{*}=\lim _{t \rightarrow \infty} x(t)$ exist? Why or why not? If so, which components of the vector x^{*} will be identical, and which components may differ?
(c) Prove that, for any N, if there exists an agent i such that $T_{i i}=1$ and $T_{j i}>0$ for all $j \neq i$, then $x_{j}^{*} \equiv \lim _{t \rightarrow \infty} x_{j}(t)$ is well-defined and equal to $x_{i}(0)$ for all $j \neq i$.
[Hint: Let $\Delta(t)=\max _{j \in N}\left|x_{i}(t)-x_{j}(t)\right|$ and let $\underline{T}=\min _{j \neq i} T_{j i}$. Prove that $\Delta(t+1) \leq(1-\underline{T}) \Delta(t)$ for all t. Show that this implies that each $x_{j}(t)$ must converge to $x_{i}(0)$ as $t \rightarrow \infty$./

Problem 2 (Clustering). Consider the Erdös-Renyi model with $n>1$ nodes and link probability $p(n)$, which changes as we add nodes. Let $p(n)=\lambda / n$ for all n. Observe that expected degree is held fixed at λ.
(a) Show that as $n \rightarrow \infty$ the expected number of triangles in the network converges to $\frac{1}{6} \lambda^{3}$. (Recall that a triangle is a triple of nodes (i, j, k) such that $g_{i j}=g_{i k}=$ $g_{j k}=1$.) Thus, the expected number of triangles hardly depends on n (once n is large). Explain how this is possible.
(b) Show that for large n the expected number of connected triples in the network is approximately $\frac{1}{2} n \lambda^{2}$. (Recall that a connected triple is a triple of nodes (i, j, k) such that $\left.g_{i j}=g_{i k}=1.\right)$
(c) Define the clustering coefficient for a random network to be the probability that two neighbors of a node are also neighbors of each other. Compute the clustering coefficient for the Erdös-Renyi model with $p(n)=\lambda / n$.

Problem 3 (Phase Transition). Consider again the Erdös-Renyi model with $n>1$ nodes and link probability $p(n)$. Let A denote the event that node 1 has at least $l \in \mathbb{N}$ neighbhors. Show that there is a phase transition for this event with the threshold function $t(n)=\lambda / n$ for some $\lambda>0$. [Hint: You may need to use the fact that $\left(1+\frac{x}{n}\right)^{n} \approx \exp (x)$ when n is large for any $x \in \mathbb{R}$.]

Bonus: Using a computer language of your choice, code a program that simulates Erdös-Renyi graphs with n nodes and connection probability p. Use a simulation with this program to illustrate the phase transition as $p(n)$ crosses the threshold $t(n)=1 / n$. If you "inspect" the networks produced, what other properties do you notice on either side of the threshold?

MIT OpenCourseWare
https://ocw.mit.edu
14.15 / 6.207 Networks

Spring 2022
For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

