$$x\left(t\right) = Tx\left(t-1\right).$$

(a) Suppose that N = 3 and

	($\frac{3}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	
T =		$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	
	ĺ	0	$\frac{1}{3}$	$\frac{2}{3}$)

What properties of this matrix guarantee that, for any initial belief vector x(0), the limit belief $x^* = \lim_{t\to\infty} x(t)$ is well-defined? Compute x^* as a function of x(0).

(b) Suppose that N = 6 and

$$T = \begin{pmatrix} \frac{1}{2} & \frac{1}{6} & \frac{1}{3} & 0 & 0 & 0\\ \frac{3}{5} & \frac{2}{5} & 0 & 0 & 0 & 0\\ \frac{3}{11} & \frac{4}{11} & \frac{4}{11} & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{1}{3} & 0 & \frac{2}{3}\\ 0 & 0 & 0 & \frac{4}{13} & \frac{3}{13} & \frac{6}{13}\\ 0 & 0 & 0 & \frac{4}{7} & 0 & \frac{3}{7} \end{pmatrix}$$

Without doing any computations, does $x^* = \lim_{t\to\infty} x(t)$ exist? Why or why not? If so, which components of the vector x^* will be identical, and which components may differ?

(c) Prove that, for any N, if there exists an agent i such that $T_{ii} = 1$ and $T_{ji} > 0$ for all $j \neq i$, then $x_j^* \equiv \lim_{t \to \infty} x_j(t)$ is well-defined and equal to $x_i(0)$ for all $j \neq i$.

[Hint: Let $\Delta(t) = \max_{j \in N} |x_i(t) - x_j(t)|$ and let $\underline{T} = \min_{j \neq i} T_{ji}$. Prove that $\Delta(t+1) \leq (1-\underline{T}) \Delta(t)$ for all t. Show that this implies that each $x_j(t)$ must converge to $x_i(0)$ as $t \to \infty$.]

Problem 2 (Clustering). Consider the Erdös-Renyi model with n > 1 nodes and link probability p(n), which changes as we add nodes. Let $p(n) = \lambda/n$ for all n. Observe that expected degree is held fixed at λ .

- (a) Show that as $n \to \infty$ the expected number of triangles in the network converges to $\frac{1}{6}\lambda^3$. (Recall that a *triangle* is a triple of nodes (i, j, k) such that $g_{ij} = g_{ik} = g_{jk} = 1$.) Thus, the expected number of triangles hardly depends on n (once n is large). Explain how this is possible.
- (b) Show that for large n the expected number of connected triples in the network is approximately $\frac{1}{2}n\lambda^2$. (Recall that a *connected triple* is a triple of nodes (i, j, k) such that $g_{ij} = g_{ik} = 1$.)
- (c) Define the *clustering coefficient* for a random network to be the probability that two neighbors of a node are also neighbors of each other. Compute the clustering coefficient for the Erdös-Renyi model with $p(n) = \lambda/n$.

Problem 3 (Phase Transition). Consider again the Erdös-Renyi model with n > 1 nodes and link probability p(n). Let A denote the event that node 1 has at least $l \in \mathbb{N}$ neighbhors. Show that there is a phase transition for this event with the threshold function $t(n) = \lambda/n$ for some $\lambda > 0$. [Hint: You may need to use the fact that $\left(1 + \frac{x}{n}\right)^n \approx \exp(x)$ when n is large for any $x \in \mathbb{R}$.]

Bonus: Using a computer language of your choice, code a program that simulates Erdös-Renyi graphs with n nodes and connection probability p. Use a simulation with this program to illustrate the phase transition as p(n) crosses the threshold t(n) = 1/n. If you "inspect" the networks produced, what other properties do you notice on either side of the threshold? MIT OpenCourseWare https://ocw.mit.edu

14.15 / 6.207 Networks Spring 2022

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>