
           

14.15/6.207 Networks Problem Set #2 

Problem 1 (Centrality Measures). Consider each of the following two networks 

(a) The directed network represented by

(b) A undirected star network with N + 1 nodes

Answer the following questions: 

1. Draw each of the networks.

2. Calculate, for each case, the vectors of eigenvector centralty and PageRank for
α = 0.25 and α = 0.5.

3. Comment on how PageRank changes as you increase α. Is this consistent
with your intuition that increasing α allocates more centrality to “indirectly”
important nodes?

4. In each network, try to compute Katz-Bonacich centrality for α = 0.5. For
what values of N in the star network (b) is Katz-Bonacich centrality (α = 0.5)
well-defined?

Hint : if you do not want to invert matrices, try writing out the series expansion 
(I − αA)−1 = I + αA + α2A2 + . . . in each case. 

Bonus : use a computer to replicate this exercise for the following matrix: 

Experiment with di˙erent values of α for PageRank and Katz-Bonacich centrality. 
Can you find the upper bound for α such that Katz-Bonacich Centrality remains 
well-defined? How does this relate to the leading (largest-norm) eigenvalue of g0? 

1 

g =

0 1 1
1 0 1
1 0 0



g =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 1 0 0 1 1
0 0 0 1 0 0
0 0 0 1 0 0
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Part 1 

Here is an example figure—you could of course label the nodes however you like. 
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Part 2 

Graph (a) 

It is convenient to do all the calculations for each graph together. We first calculate 
eigenvector centrality. This is a vector [v0, v1, v2]0 that solves 

λv0 = v1 + v2 

λv1 = v0 (1)
λv2 = v0 + v1 

1 = v0 + v1 + v2 

Combining the first and fourth equations gives λv0 = 1 − v0 or v0 = 
1+
1 
λ . Similarly, 

combining the third and fourth gives λv2 = 1 − v2 or v2 = 
1+
1 
λ . Combining these 

with the second gives v1 = 1 .
λ(1+λ)

It remains to solve for λ via the normalization equation. This can be written as 

2 + 
λ
1 

1 = 
1 + λ 

or 
λ(1 + λ) = 2λ + 1 

Solving this quadratic equation, the relevant root is 
√ 
5 + 1 

λ = 
2 

and the vector of eigenvector centrality is therefore 

v = 
h i0 
√ 2 √ 4 √ √ 2 (2)5+3 ( 5+3)( 5+1) 5+3 

We next calculate Katz-Bonacich centrality. In this solution, we will get the 
solution by manually inverting the relevant matrix. First, we write. 

We then use the standard formulas for inverting a 3x3 matrix to write 
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I − αg′ =

 1 −α −α
−α 1 0
−α −α 1



(I − αg′)−1 =
1

1− 2α2 − α3

 1 (α2 + α) α
α 1− α2 α2

α2 + α α2 + α 1− α2
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If you did this middle step with the help of Wolfram Alpha, with or without α 
plugged in, it’s totally fine! 

Our candidate measure for Katz-Bonacich centrality is therefore 

This vector has all positive entries, and is hence a well-defined centrality measure, if 
1 − 2α2 − α3 > 0. This condition holds for α = 0.25 and α = 0.5. The solutions are 

We will use a similar strategy to calculate PageRank. The matrix we want to 
invert is 

We calculate, again by hand, 

and therefore derive the candidate centrality measure, 

This is a positive vector, as we desire, for 4 − 3α2 − α3 > 0. But this is clearly 
satisfied for any α ∈ [0, 1), as α2 < 1 and α3 < 1. In our cases, we find 
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v = (I − αg′)−11′ = 1

1− 2α2 − α3

1 + 2α + α2

1 + α
1 + 2α + α2



v0.25 = 20
11

16
11

20
11

[ ]′
v0.5 =

[
6 4 6

]′

I − αg̃′ =

 1 −α/2 −α
−α/2 1 0
−α/2 −α/2 1



(I − αg̃′)−1 =
1

1− 3α2

4
− α3

4

 1 α/2 + α2/2 α
α/2 1− α2/2 α2/2

α2/4 + α/2 α2/4 + α/2 1− α2/4

 (3)

v =
4

4− 3α2 − α3

1 + 3
2
α + 1

2
α2

1 + 1
2
α

1 + α + 1
4
α2



v0.25 =
[
40
27

32
27

4
3

]′
=

4

27

[
10 8 9

]′
v0.5 =

[
12/5 8/5 2

]′
=

2

5

[
6 4 5

]′ (4)
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Graph (b) 

First, eigenvector centrality. Let node 0 index the central node, and write the 
vector as [v0, v1, . . . , vN ]. The N equations are 

(5) 

A good guess is that all the i > 0 have the same centrality, or vi ≡ v1. We can then 
write more concisely1

λv0 = Nv1 

λv1 = v0 

1 = v0 + Nv1 

Combining the first two equations gives λ2v1 = Nv1 or λ = N1/2 . The first equation √ 
then says N1/2v0 = Nv1 or v0 = Nv1. We finally use the normalization to find 

√ 
N 

v0 = √ 
N + N 
1 

v1 = √ 
N + N 

Let us next consider Katz-Bonacich centrality. Observe the following struc-
ture for the matrix gk = (g0)k . For each k, element ij of this matrix gives the number 
of unique paths between nodes. Notice that all paths have to “bounce between” the 
center node and the outside nodes. If k is odd, observe that paths have to either 
start or end at 0, but cannot be both. The number of possible paths is N (k−1)/2 . 
Why? There are k − 2 nodes that are not fixed (everything except the start or the 
end), and each could be any of the N non-central nodes. Thus we know 

1If you are worried about the logical consistency of “guess and check” here, remember the Perron-
Frobenius theorem guarantees the existence of a leading eigenvector which is the only one with 
strictly positive entries. 
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λv0 =
N∑
n=1

vi

λvi = v0,∀1 ≤ n ≤ N

1 = v0 +
N∑
i=1

vi

gk =


0 N (k−1)/2 N (k−1)/2 . . .
N (k−1)/2 0 0 . . .
N (k−1)/2 0 0 . . .
. . .

  if k is odd
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If instead k is even, then similar logic suggests 

Let’s now try to calculate Katz-Bonacich centrality. The first element is 

if α2N < 1, then 
1 + αN 

v0 = 
1 − α2N 

Simliarly, the other elements solve 

X∞

which under the same condition α2N < 1 is positive and well defined: 

1 + α 
v1 = 

1 − α2N 

To summarize, our solution whenever α2N < 1 is 

v = [v0, v1, . . . , vN ]
0 

1 + αN 
v0 =

1 − α2N (6) 
1 + α 

vi = , ∀i > 0 
1 − α2N 

Let’s finally consider PageRank. The calculation here is going to be similar. 
The normalized adjacency matrix g̃. Let us now use the same logic to calculate its 
matrix powers. We had four “types” of paths, which are also illustrated (crudely) in 
a figure with N = 4: 
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gk =


N

k
2 0 0 . . .

0 N
k
2
−1 N

k
2
−1 . . .

0 N
k
2
−1 N

k
2
−1 . . .

. . .

 if k is even

v0 =
∑∞

(α2N)k︸k=0 ︷︷ ︸
even terms

∑∞
k=0

(α2N)k+αN︸ ︷︷ ︸
odd terms

v1 = (α2N)k︸k=0 ︷︷ ︸
even terms

+α
∑∞
k=0

(α2N)k︸ ︷︷ ︸
odd terms
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1. From 0 to 0 (top left entry of the even powers)

2. From 0 to {1, . . . , N} (first column of odd powers)

3. From{1, . . . , N} to 0 (first row of odd powers)

4. From {1, . . . , N} to {1, . . . , N}

For 2 and 4, which end on the peripheral nodes, our path is split by 1/N before 
being re-combined. For 1 and 3, which end on node 0, the path is split by 1/N and 
recombined N times equally. This logic allows us to conclude 

We now calculate 
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gk =




1 0 0 . . .

0 1/N 1/N . . .

0 1/N 1/N . . .

. . .

  if k is even


0 1 1 . . .

1/N 0 0 . . .

1/N 0 0 . . .

. . .

 if k is odd

v0 =
∑∞

(α2)k︸k=0︷︷ ︸
even terms

∑∞
k=0

(α2)k+αN︸ ︷︷ ︸
odd terms
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if α < 1, then 
1 + αN 

v0 = 
1 − α2 

Similarly, 

if α < 1, then 
1 + α/N 1 + α/N 

v1 = v0 = 
1 + αN 1 − α2 

To summarize, our solution is 

v = [v0, v1, . . . , vN ]
0 

1 + αN 
v0 =

1 − α2 (7) 
1 + α/N 

vi = , ∀i > 0 
1 − α2 

Part 3 

For graph (b), increasing α puts more (relative) weight on the center node. Here, it 
was more transparently clear from the calculation itself how the higher-α calculation 
gives the center node more credit for facilitating indirect links between the peripheral 
nodes. 

For graph (a), increasing α puts more (relative) PageRank weight on nodes 1 and 
3 versus node 2. To see the logic behind this, you can look at the matrix powers of 
g0 and observe that nodes 1 and 3 have many more inward walks than node 2. 

Part 4 

See the calculations for Part 2. The upper bound for N such that Katz-Bonacich(α) 
¯is defined is N := 

α 
1 
2 . This is all that you have to state for full credit. 

The more general property (in a symmetric, irreducible graph), which you might 
have discovered if you did the bonus problem, is α < λ where λ is the largest 
eigenvalue of g0—you can check this works in the star network, where we calculated √ 
the largest eigenvalue as N . 
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v1 =
∑∞

(α2)k︸k=0︷︷ ︸
even terms

+αN−1
∑∞
k=0

(α2)k︸ ︷︷ ︸
odd terms
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Why? Let’s write out the matrix M × M matrix g0 in terms of its eigendecom-
position. Because the matrix is real and symmetric, we can write g0 = V ΛV 0 and 
we know the eigenvectors and eigenvalues are real. The sequence expansion of the 
Leontief inverse matrix, if it exists, is 

Using the eigendecomposition, this is 

Using the fact that V 0V = I, this becomes 

Let’s re-write this in terms of the column eigenvectors (vi)i=1 and their eigenvalues 
(λi)

M 
i=1, 

We need each of the geometric sums to converge. By the Perron-Frobenius theorem, 
we know that there is a unique largest (in norm) eigenvalue which we can index as λ1. 
Thus α < λ1 is necessary and suÿcient for all the sums in () to converge to a well-
defined Leontief inverse, and hence we have a well-defined Katz-Bonacich centrality. 
You can also use , plus a little more reasoning, to discover what Katz-Bonacich 
centrality limits to as α → λ1—you may have already seen this “coincidence” in your 
numerical explorations! 
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(I − αg′)−1 =
∑∞
k=0

αk(g′)k (8)

(I − αg′)−1 =
∑∞
k=0

αk(V ΛV ′)k (9)

(I − αg′)−1 = V

(∑∞
k=0

αkΛk

)
V ′ (10)

M

(I − αg′)−1 =
M∑
i=1

∑∞
k=0

αkλi
kvivi

′ (11)
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