Problem 1 (Centrality Measures). Consider each of the following two networks
(a) The directed network represented by

$$
g=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

(b) A undirected star network with $N+1$ nodes

Answer the following questions:

1. Draw each of the networks.
2. Calculate, for each case, the vectors of eigenvector centralty and PageRank for $\alpha=0.25$ and $\alpha=0.5$.
3. Comment on how PageRank changes as you increase α. Is this consistent with your intuition that increasing α allocates more centrality to "indirectly" important nodes?
4. In each network, try to compute Katz-Bonacich centrality for $\alpha=0.5$. For what values of N in the star network (b) is Katz-Bonacich centrality ($\alpha=0.5$) well-defined?

Hint: if you do not want to invert matrices, try writing out the series expansion $(I-\alpha A)^{-1}=I+\alpha A+\alpha^{2} A^{2}+\ldots$ in each case.

Bonus: use a computer to replicate this exercise for the following matrix:

$$
g=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Experiment with different values of α for PageRank and Katz-Bonacich centrality. Can you find the upper bound for α such that Katz-Bonacich Centrality remains well-defined? How does this relate to the leading (largest-norm) eigenvalue of g^{\prime} ?

Part 1

Here is an example figure - you could of course label the nodes however you like.

Part 2

Graph (a)

It is convenient to do all the calculations for each graph together. We first calculate eigenvector centrality. This is a vector $\left[v_{0}, v_{1}, v_{2}\right]^{\prime}$ that solves

$$
\begin{align*}
\lambda v_{0} & =v_{1}+v_{2} \\
\lambda v_{1} & =v_{0} \\
\lambda v_{2} & =v_{0}+v_{1} \tag{1}\\
1 & =v_{0}+v_{1}+v_{2}
\end{align*}
$$

Combining the first and fourth equations gives $\lambda v_{0}=1-v_{0}$ or $v_{0}=\frac{1}{1+\lambda}$. Similarly, combining the third and fourth gives $\lambda v_{2}=1-v_{2}$ or $v_{2}=\frac{1}{1+\lambda}$. Combining these with the second gives $v_{1}=\frac{1}{\lambda(1+\lambda)}$.

It remains to solve for λ via the normalization equation. This can be written as

$$
1=\frac{2+\frac{1}{\lambda}}{1+\lambda}
$$

or

$$
\lambda(1+\lambda)=2 \lambda+1
$$

Solving this quadratic equation, the relevant root is

$$
\lambda=\frac{\sqrt{5}+1}{2}
$$

and the vector of eigenvector centrality is therefore

$$
v=\left[\begin{array}{ccc}
\frac{2}{\sqrt{5}+3} & \frac{4}{(\sqrt{5}+3)(\sqrt{5}+1)} & \frac{2}{\sqrt{5}+3} \tag{2}
\end{array}\right]^{\prime}
$$

We next calculate Katz-Bonacich centrality. In this solution, we will get the solution by manually inverting the relevant matrix. First, we write.

$$
I-\alpha g^{\prime}=\left[\begin{array}{ccc}
1 & -\alpha & -\alpha \\
-\alpha & 1 & 0 \\
-\alpha & -\alpha & 1
\end{array}\right]
$$

We then use the standard formulas for inverting a 3×3 matrix to write

$$
\left(I-\alpha g^{\prime}\right)^{-1}=\frac{1}{1-2 \alpha^{2}-\alpha^{3}}\left[\begin{array}{ccc}
1 & \left(\alpha^{2}+\alpha\right) & \alpha \\
\alpha & 1-\alpha^{2} & \alpha^{2} \\
\alpha^{2}+\alpha & \alpha^{2}+\alpha & 1-\alpha^{2}
\end{array}\right]
$$

If you did this middle step with the help of Wolfram Alpha, with or without α plugged in, it's totally fine!

Our candidate measure for Katz-Bonacich centrality is therefore

$$
v=\left(I-\alpha g^{\prime}\right)^{-1} 1^{\prime}=\frac{1}{1-2 \alpha^{2}-\alpha^{3}}\left[\begin{array}{c}
1+2 \alpha+\alpha^{2} \\
1+\alpha \\
1+2 \alpha+\alpha^{2}
\end{array}\right]
$$

This vector has all positive entries, and is hence a well-defined centrality measure, if $1-2 \alpha^{2}-\alpha^{3}>0$. This condition holds for $\alpha=0.25$ and $\alpha=0.5$. The solutions are

$$
\begin{aligned}
v_{0.25} & =\left[\begin{array}{lll}
\frac{20}{11} & \frac{16}{11} & \frac{20}{11}
\end{array}\right]^{\prime} \\
v_{0.5} & =\left[\begin{array}{lll}
6 & 4 & 6
\end{array}\right]^{\prime}
\end{aligned}
$$

We will use a similar strategy to calculate PageRank. The matrix we want to invert is

$$
I-\alpha \tilde{g}^{\prime}=\left[\begin{array}{ccc}
1 & -\alpha / 2 & -\alpha \\
-\alpha / 2 & 1 & 0 \\
-\alpha / 2 & -\alpha / 2 & 1
\end{array}\right]
$$

We calculate, again by hand,

$$
\left(I-\alpha \tilde{g}^{\prime}\right)^{-1}=\frac{1}{1-\frac{3 \alpha^{2}}{4}-\frac{\alpha^{3}}{4}}\left[\begin{array}{ccc}
1 & \alpha / 2+\alpha^{2} / 2 & \alpha \tag{3}\\
\alpha / 2 & 1-\alpha^{2} / 2 & \alpha^{2} / 2 \\
\alpha^{2} / 4+\alpha / 2 & \alpha^{2} / 4+\alpha / 2 & 1-\alpha^{2} / 4
\end{array}\right]
$$

and therefore derive the candidate centrality measure,

$$
v=\frac{4}{4-3 \alpha^{2}-\alpha^{3}}\left[\begin{array}{c}
1+\frac{3}{2} \alpha+\frac{1}{2} \alpha^{2} \\
1+\frac{1}{2} \alpha \\
1+\alpha+\frac{1}{4} \alpha^{2}
\end{array}\right]
$$

This is a positive vector, as we desire, for $4-3 \alpha^{2}-\alpha^{3}>0$. But this is clearly satisfied for any $\alpha \in[0,1)$, as $\alpha^{2}<1$ and $\alpha^{3}<1$. In our cases, we find

$$
\begin{align*}
v_{0.25} & =\left[\begin{array}{lll}
\frac{40}{27} & \frac{32}{27} & \frac{4}{3}
\end{array}\right]^{\prime}=\frac{4}{27}\left[\begin{array}{lll}
10 & 8 & 9
\end{array}\right]^{\prime} \tag{4}\\
v_{0.5} & =\left[\begin{array}{lll}
12 / 5 & 8 / 5 & 2
\end{array}\right]^{\prime}=\frac{2}{5}\left[\begin{array}{lll}
6 & 4 & 5
\end{array}\right]^{\prime}
\end{align*}
$$

Graph (b)

First, eigenvector centrality. Let node 0 index the central node, and write the vector as $\left[v_{0}, v_{1}, \ldots, v_{N}\right]$. The N equations are

$$
\begin{aligned}
\lambda v_{0} & =\sum_{n=1}^{N} v_{i} \\
\lambda v_{i} & =v_{0}, \forall 1 \leq n \leq N \\
1 & =v_{0}+\sum_{i=1}^{N} v_{i}
\end{aligned}
$$

A good guess is that all the $i>0$ have the same centrality, or $v_{i} \equiv v_{1}$. We can then write more concisely ${ }^{11}$

$$
\begin{aligned}
\lambda v_{0} & =N v_{1} \\
\lambda v_{1} & =v_{0} \\
1 & =v_{0}+N v_{1}
\end{aligned}
$$

Combining the first two equations gives $\lambda^{2} v_{1}=N v_{1}$ or $\lambda=N^{1 / 2}$. The first equation then says $N^{1 / 2} v_{0}=N v_{1}$ or $v_{0}=\sqrt{N} v_{1}$. We finally use the normalization to find

$$
\begin{align*}
& v_{0}=\frac{\sqrt{N}}{\sqrt{N}+N} \tag{5}\\
& v_{1}=\frac{1}{\sqrt{N}+N}
\end{align*}
$$

Let us next consider Katz-Bonacich centrality. Observe the following structure for the matrix $g^{k}=\left(g^{\prime}\right)^{k}$. For each k, element $i j$ of this matrix gives the number of unique paths between nodes. Notice that all paths have to "bounce between" the center node and the outside nodes. If k is odd, observe that paths have to either start or end at 0 , but cannot be both. The number of possible paths is $N^{(k-1) / 2}$. Why? There are $k-2$ nodes that are not fixed (everything except the start or the end), and each could be any of the N non-central nodes. Thus we know

$$
g^{k}=\left[\begin{array}{ccc}
0 & N^{(k-1) / 2} & N^{(k-1) / 2} \ldots \\
N^{(k-1) / 2} & 0 & 0 \ldots \\
N^{(k-1) / 2} & 0 & 0 \ldots \\
\cdots & &
\end{array}\right] \text { if } k \text { is odd }
$$

[^0]If instead k is even, then similar logic suggests

$$
g^{k}=\left[\begin{array}{ccc}
N^{\frac{k}{2}} & 0 & 0 \ldots \\
0 & N^{\frac{k}{2}-1} & N^{\frac{k}{2}-1} \cdots \\
0 & N^{\frac{k}{2}-1} & N^{\frac{k}{2}-1} \cdots \\
\cdots & &
\end{array}\right] \text { if } k \text { is even }
$$

Let's now try to calculate Katz-Bonacich centrality. The first element is

$$
v_{0}=\underbrace{\sum_{k=0}^{\infty}\left(\alpha^{2} N\right)^{k}}_{\text {even terms }}+\underbrace{\alpha N \sum_{k=0}^{\infty}\left(\alpha^{2} N\right)^{k}}_{\text {odd terms }}
$$

if $\alpha^{2} N<1$, then

$$
v_{0}=\frac{1+\alpha N}{1-\alpha^{2} N}
$$

Simliarly, the other elements solve

$$
v_{1}=\underbrace{\sum_{k=0}^{\infty}\left(\alpha^{2} N\right)^{k}}_{\text {even terms }}+\underbrace{\alpha \sum_{k=0}^{\infty}\left(\alpha^{2} N\right)^{k}}_{\text {odd terms }}
$$

which under the same condition $\alpha^{2} N<1$ is positive and well defined:

$$
v_{1}=\frac{1+\alpha}{1-\alpha^{2} N}
$$

To summarize, our solution whenever $\alpha^{2} N<1$ is

$$
\begin{align*}
v & =\left[v_{0}, v_{1}, \ldots, v_{N}\right]^{\prime} \\
v_{0} & =\frac{1+\alpha N}{1-\alpha^{2} N} \tag{6}\\
v_{i} & =\frac{1+\alpha}{1-\alpha^{2} N}, \forall i>0
\end{align*}
$$

Let's finally consider PageRank. The calculation here is going to be similar. The normalized adjacency matrix \tilde{g}. Let us now use the same logic to calculate its matrix powers. We had four "types" of paths, which are also illustrated (crudely) in a figure with $N=4$:

1. From 0 to 0 (top left entry of the even powers)
2. From 0 to $\{1, \ldots, N\}$ (first column of odd powers)
3. From $\{1, \ldots, N\}$ to 0 (first row of odd powers)
4. From $\{1, \ldots, N\}$ to $\{1, \ldots, N\}$

For 2 and 4, which end on the peripheral nodes, our path is split by $1 / N$ before being re-combined. For 1 and 3, which end on node 0 , the path is split by $1 / N$ and recombined N times equally. This logic allows us to conclude

$$
g^{k}= \begin{cases}{\left[\begin{array}{ccc}
1 & 0 & 0 \ldots \\
0 & 1 / N & 1 / N \ldots \\
0 & 1 / N & 1 / N \ldots \\
\ldots & &
\end{array} \quad \text { if } k\right. \text { is even }} \\
{\left[\begin{array}{ccc}
0 & 1 & 1 \ldots \\
1 / N & 0 & 0 \ldots \\
1 / N & 0 & 0 \ldots \\
\cdots &
\end{array}\right]} & \text { if } k \text { is odd }\end{cases}
$$

We now calculate

$$
v_{0}=\underbrace{\sum_{k=0}^{\infty}\left(\alpha^{2}\right)^{k}}_{\text {even terms }}+\underbrace{\alpha N \sum_{k=0}^{\infty}\left(\alpha^{2}\right)^{k}}_{\text {odd terms }}
$$

if $\alpha<1$, then

$$
v_{0}=\frac{1+\alpha N}{1-\alpha^{2}}
$$

Similarly,

$$
v_{1}=\underbrace{\sum_{k=0}^{\infty}\left(\alpha^{2}\right)^{k}}_{\text {even terms }}+\underbrace{\alpha N^{-1} \sum_{k=0}^{\infty}\left(\alpha^{2}\right)^{k}}_{\text {odd terms }}
$$

if $\alpha<1$, then

$$
v_{1}=\frac{1+\alpha / N}{1+\alpha N} v_{0}=\frac{1+\alpha / N}{1-\alpha^{2}}
$$

To summarize, our solution is

$$
\begin{align*}
v & =\left[v_{0}, v_{1}, \ldots, v_{N}\right]^{\prime} \\
v_{0} & =\frac{1+\alpha N}{1-\alpha^{2}} \tag{7}\\
v_{i} & =\frac{1+\alpha / N}{1-\alpha^{2}}, \forall i>0
\end{align*}
$$

Part 3

For graph (b), increasing α puts more (relative) weight on the center node. Here, it was more transparently clear from the calculation itself how the higher- α calculation gives the center node more credit for facilitating indirect links between the peripheral nodes.

For graph (a), increasing α puts more (relative) PageRank weight on nodes 1 and 3 versus node 2. To see the logic behind this, you can look at the matrix powers of g^{\prime} and observe that nodes 1 and 3 have many more inward walks than node 2 .

Part 4

See the calculations for Part 2. The upper bound for N such that Katz-Bonacich (α) is defined is $\bar{N}:=\frac{1}{\alpha^{2}}$. This is all that you have to state for full credit.

The more general property (in a symmetric, irreducible graph), which you might have discovered if you did the bonus problem, is $\alpha<\lambda$ where λ is the largest eigenvalue of g^{\prime}-you can check this works in the star network, where we calculated the largest eigenvalue as \sqrt{N}.

Why? Let's write out the matrix $M \times M$ matrix g^{\prime} in terms of its eigendecomposition. Because the matrix is real and symmetric, we can write $g^{\prime}=V \Lambda V^{\prime}$ and we know the eigenvectors and eigenvalues are real. The sequence expansion of the Leontief inverse matrix, if it exists, is

$$
\begin{equation*}
\left(I-\alpha g^{\prime}\right)^{-1}=\sum_{k=0}^{\infty} \alpha^{k}\left(g^{\prime}\right)^{k} \tag{8}
\end{equation*}
$$

Using the eigendecomposition, this is

$$
\begin{equation*}
\left(I-\alpha g^{\prime}\right)^{-1}=\sum_{k=0}^{\infty} \alpha^{k}\left(V \Lambda V^{\prime}\right)^{k} \tag{9}
\end{equation*}
$$

Using the fact that $V^{\prime} V=I$, this becomes

$$
\begin{equation*}
\left(I-\alpha g^{\prime}\right)^{-1}=V\left(\sum_{k=0}^{\infty} \alpha^{k} \Lambda^{k}\right) V^{\prime} \tag{10}
\end{equation*}
$$

Let's re-write this in terms of the column eigenvectors $\left(v_{i}\right)_{i=1}^{M}$ and their eigenvalues $\left(\lambda_{i}\right)_{i=1}^{M}$,

$$
\begin{equation*}
\left(I-\alpha g^{\prime}\right)^{-1}=\sum_{i=1}^{M} \sum_{k=0}^{\infty} \alpha^{k} \lambda_{i}^{k} v_{i} v_{i}^{\prime} \tag{11}
\end{equation*}
$$

We need each of the geometric sums to converge. By the Perron-Frobenius theorem, we know that there is a unique largest (in norm) eigenvalue which we can index as λ_{1}. Thus $\alpha<\lambda_{1}$ is necessary and sufficient for all the sums in () to converge to a welldefined Leontief inverse, and hence we have a well-defined Katz-Bonacich centrality. You can also use, plus a little more reasoning, to discover what Katz-Bonacich centrality limits to as $\alpha \rightarrow \lambda_{1}$-you may have already seen this "coincidence" in your numerical explorations!

MIT OpenCourseWare
https://ocw.mit.edu
14.15 / 6.207 Networks

Spring 2022
For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

[^0]: ${ }^{1}$ If you are worried about the logical consistency of "guess and check" here, remember the PerronFrobenius theorem guarantees the existence of a leading eigenvector which is the only one with strictly positive entries.

