
               
              

           
               

              
      

 

14.15/6.207 Networks Problem Set #1 

Problem 1 (Adding a Link to a Network). Fix an undirected network. For each of 
the following network statistics, when a link is added to the network, does the statis-
tic always increase, always decrease, or sometimes increase and sometime decrease 
(depending on the network and the location of the new link)? For each answer, either 
give a proof that the statistic always increases or always decreases, or an example 
that shows it can go either way. 

(a) average degree 

(b) diameter 

(c) average path length 

(d) overall clustering coeÿcient 

(e) average clustering coeÿcient 

(f) decay centrality, for an arbitrary node i 

(g) betweenness centrality, for an arbitrary node i 

Solution. 

Supporting Claim 1. Adding an edge doesn’t increase the shortest path length ̀ (u, v) 
for any pair of vertices (u, v). 

Proof of claim. All paths in the old graph remain in the new graph, so the new 
shortest u v path can be no longer than the old one. 

a. Each edge is incident to two vertices, so if E is the total number of edges then P 
v dv = 2E. Therefore the average degree is 2E/n and increases when we add 

an edge. 

b. The diameter is 
max `(x, y). 
x,y∈G 

Since all of the ̀ (x, y) are non-increasing, so is the diameter. 

c. Similarly, since ̀ (x, y) is non-increasing, so is the average shortest path length � �−1 Xn 
`(x, y). 

2 
(x,y)∈G 
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d, e. Both of these can go in either direction. 

f. Since δ ≤ 1 and ̀ (x, y) is non-increasing, δ `(x,y) is non-decreasing. So the decay 
centrality X 

δ `(x,y) 

(x,y)∈G 

is non-decreasing. 

g. Can go in either direction. 
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Problem 2 (The Adjacency Matrix). Let g be the adjacency matrix of an undirected 
network, and let 1 be the column vector whose elements are all 1. In terms of these 
quantities write expressions for: 

(a) The vector d whose elements are the degrees di of the nodes. 

(b) The number m of edges in the network. 

(c) The matrix N whose element Nij is the number of common neighbors of nodes 
i and j. 

(d) The total number of triangles in the network, where a triangle means three 
nodes, each connected by edges to both of the others. 

Solution. 

(a) Note that the ith entry of d is given by 

nX 
gij = (g1)i. 

j=1 

We conclude that d = g1. 

(b) Each edge (i, j) corresponds to two 1s appearing among the entries of g, namely 
the entries gij and gji. It follows that 

mX 
2m = gij = 1|g1. 

i,j=1 

(c) For each common neighbor k of nodes i and j, there is a unique length-2 walk 
i k j, and vice-versa. Thus, the number of such common neighbors Nij 

is equal to the number of i j walks of length 2, namely g2 (as proved in 
lecture). 

(d) Similarly, each triangle corresponds to a unique length-3 walk beginning and 
ending at a give node. This is exactly the sum of the diagonal entries of g3 or 
trace(g3). 
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Problem 3 (Betweenness Centrality in Trees). Consider an undirected (connected) 
tree of n vertices. Suppose that a particular vertex k in the tree has degree d, so 
that its removal would divide the tree into d disjoint regions, and suppose that the 
sizes of those regions are n1, . . . , nd. 

(a) Show that the betweenness centrality of the vertex is 

Xd 
nm(nm − 1)

Bk = 1 − . 
(n − 1)(n − 2)

m=1 

(b) Using this result, calculate the betweenness of the ith vertex from the end of a 
“line graph” of n vertices, i.e., n vertices in a row. 

Solution. (a) Let Rm denote region m. If i and j are two vertices in the same 
region, none of the shortest paths between them passes through vertex k, while 
if they are in di˙erent regions, all of the shortest paths between them pass 
through vertex k. 

Therefore the betweenness centrality of k is equal to the number of pairs of 
vertices not belonging to the same region divided by the total number of pairs 
of vertices excluding k. The total number of pairs of vertices excluding k is � � 

n − 1 (n − 1)(n − 2) 
= . 

2 2 

The number of vertex pairs not belonging to the same region the total number 
of vertex pairs minus those that do belong to the same region, which is � � d � �Xn − 1 nm− . 

2 2 
m=1 

Dividing the two quantities gives the formula we wanted. 

(b) The “line graph” has the form described above, with regions of size l − 1 and 
n − l. Plugging this into the above, we get 

(l − 1)(l − 2) (n − l)(n − l − 1)
Bl = 1 − − . 

(n − 1)(n − 2) (n − 1)(n − 2) 
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Problem 4 (Expected Degree). First, some definitions. Fix an undirected graph 
G = (N, E) with finitely many nodes, none of which have degree zero. We will use 
N(i) to denote the neighborhood of a node i—that is, the set of all nodes j that share 
some edge with i. Define di to be the degree of node i, which is also the size of i’s 
neighborhood: di = |N(i)|. 1 Let P (d) be the fraction of the nodes in the graph with 
degree d. 

(a) Suppose we pick an edge uniformly at random2 and then pick either node of 
that edge with equal probability. Call that node i. Let D be the degree of i; it 
is a random variable because the node was random. What is the expectation 
of D? Write your answer in terms of P . 

(b) Prove that the expectation of D is at least as large as the mean of P . 

(c) We make a definition to keep track of how popular i’s neighbors are, on average. 
Definition. Define δi to be the arithmetic mean of the degree of i’s neighbors. 
That is, P 

j∈N(i) dj
δi = . 

di 

Theorem. For graph G = (N, E) satisfying the conditions given in this problem, X X1 1 
di ≤ δi. |N | |N |

i∈N i∈N 

Prove this statement. 

Solution. 

a. To understand this, let us start with a simple case: a network on four nodes 

1 
with three links: {12, 23, 34}. So, one half of the nodes have degree 1 and one 
half have degree 2. That is, P (1) = 

2 = P (2). 

It is easy to see that if we randomly pick a link and then randomly pick an end 
of it, there is a 2 

3
chance that we find a node of degree 2 and a 1 chance that 

3 
we find a node of degree 1. This just reflects the fact that higher degree nodes 
are involved in a proportionately higher percentage of the links. 

In fact, their degree determines relatively how many more links they are in-
volved with. In particular, if we randomly pick a link and a node at the end 

1Recall we use the notation |S| to denote the number of elements in the set S. 
2That is, each edge of the graph is chosen with equal probability. 
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of it, and we consider two nodes of degrees dj and dk, then node k is relatively 
dk/dj times more likely to be the one we find than node j. 

Let Pe be the distribution of D. From the above we can gyess that that prob-
ability of a degree-d node being sampled is proportional to degree, making it 
natural to conjecture that 

P (d)d 
Pe(d) = , 

µPP 
where µP = d P (d)d is the expected degree under the distribution P . 

To be a bit more formal or precise, let us fix a graph (N, E), where N = 
{1, . . . , n} is the set of notes and E ⊆ N × N is the set of edges. Since P (d) 
is the fraction of the nodes in the graph with degree d, there are nP (d) nodes 
with degree d. 

Each edge is picked uniformly at random, and then either node of that edge 
is picked with equal probability. So we have 2 |E| events corresponding to 
the results of the node selection process, each occurs with probability 1 .

2|E|
Among those events, each node with degree d is chosen d times, and there are 
exactly nP (d) nodes with degree d. Thus, a node with degree d is chosen with 

nP (d)dprobability . It is familiar that the sum of degrees across all nodes is
2|E|

equal to 2 |E| (see Problem 1), so the expected degree µP = 2|E| , giving rise to 
n 

the formula of Pe above. 

The random variable D is distributed according to Pe. Therefore, the expecta-
tion of D is X e 

X P (d)d2 

µD = P (d)d = . 
µP

d d 

b. Start from the fact that the variance of P is nonnegative: X X 
0 ≤ σP 

2 = P (d) (d − µP )
2 = P (d)d2 − µP 

2 . 
d d 

We obtain X X 
2 P (d)d2 

P (d)d2 ≥ µP ⇔ µD = ≥ µP . 
µP

d d 

For an alternative version of this proof, define a random variable X with dis-
tribution P . A standard fact (which you can work out from basic algebra with 
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quadratics) is that 

E[X2] E[X]2 + Var[X] 
µD = = .

E[X] E[X] 

So we conclude that 
Var[X] 

µD = E[X] + = µP + a positive number.
E[X] 

PThe positive number is 
µ

σ 

P 

2 

, which tells us that µD − µP is larger the more 
variable is P (in the sense captured by variance over mean). 

c. It is equivalent to show X X 
di ≤ δi. (1) 

i∈V i∈V 

Since di = |N(i)|, we can write the left-hand side of equation (1) as X X X X 
di = 1 = 2. 

i∈V i∈V j∈N (i) j<i, (ij)∈E 

The last equality is due to the fact that each edge is counted twice within the 
summation i ∈ V, j ∈ N(i). 

Similarly, by definition, the right-hand side of equation (1) can be written as P � �X X dj X X X 
j∈N(i) dj dj di

δi = = = + . 
di di di dj

i∈V i∈V i∈V j∈N(i) j<i, (ij)∈E 

Therefore, equation (1) is equivalent to � �X X dj di
2 ≤ + . 

di dj
j<i, (ij)∈E j<i, (ij)∈E 

Because 
dj di 

+ ≥ 2 
di dj 

for any di and dj , the final inequality is satisfied. Thus by the series of equiv-
alences the initial inequality is satisfied. 

Note that the fact dj + di ≥ 2 is a special case of the fact that x + 1 ≥ 2 for
di dj x 

any real number x > 0, which can be easily verified using high school calculus. 
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