
            
                   

14.15/6.207 Networks Problem Set #10 

Problem 1. Consider the model of cooperation on networks: each period, eachP 
player i chooses an e˙ort level xi ≥ 0 and receives payo˙ ui (x) = j 6=i f (xj ) − xi, 
and each player observes only her neighbors actions. Assume f is the square root √
function: f (xi) = xi. 

(a) Suppose the network is an n-player clique. Prove that the maximum equi-
librium cooperation level for each player is the same number w > 0, given 
by √ 

w = δ (n − 1) w. 

(b) Suppose the network is a n+1-player star. Prove that the maximum equilibrium 
cooperation level of the center player and the maximum cooperation level of 
each periphery player are given by y, z > 0, respectively, where y and z solve 
the system of equations 

√ 
y 

z 

= 

= 

δn z 
√ √ 
δ y + δ2 (n − 1) z. 

(c) Let n = 5. Numerically, find one discount factor δ for which w > y, and find 
another discount factor δ0 for which w < y. Which is larger, δ or δ0? Explain 
intuitively why one discount factor leads to more cooperation in the clique and 
the other leads to more cooperation in the star. 

Solution. (a) The maximum cooperation level that can be supported in equilibrium 
is given by the (component-wise) greatest solution to the system of equations: 

∞X X 
xi = (1 − δ) δt f(xj ). 

t=1 j∈Ni(t) 

In the n-player clique network, Ni(t) = {j : j 6= i} for all t ≥ 1. Therefore, the 
above expression simplifies to X 

xi = δ f(xj ), 
j 6=i 

which implies that 
nX 

xi + δf(xi) = δ f(xj ). 
j=1 
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Since f is an increasing function, the above equation implies that xi = xj = w 
for all i, j, where w is the solution to 

√ 
w = δ (n − 1) w. 

(b) 

Solution. By an argument similar to the argument from part (a), every pe-
riphery player has the same maximum level of cooperation z. Since the center 
player is distance one from periphery players and periphery players are distance 
two apart from one another, z solves 

z = δ 
√ 
y + δ2 (n − 1) 

√ 
z. 

Since the center player is distance one from every other player, the maximum 
level of cooperation of the center player solves 

√ 
y = δn z. 

(c) 

Solution. When δ = 0.1, then w = 0.16, y = 0.099, and z = 0.039. When 
δ0 = 0.5, then w = 4, y = 4.05, and z = 2.6. δ0 is larger. Intuitively, when δ 
is small, the periphery players in the star network have a smaller incentive to 
cooperate, since they highly discount the cooperation of other players in the 
periphery. This leads them to have a lower cooperation level, in turn leading 
to lower cooperation level for the center player. As δ → 1, the structure of 
the network becomes irrelevant, because cooperation with distant players is 
not discounted by much. On the other hand, in the star network, there are 
n +1 players, whereas in the clique there are n players. So players have higher 
incentives to cooperate on the star network when δ is large. 
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Problem 2. Alice and Bob are trying to meet for lunch. They can each go to the 
Cafe or the Diner. Alice’s oÿce is near the Cafe, so she knows the exact length of 
time w it would take to wait in line at the cafe. Bob’s oÿce is far from the Cafe, so 
all he knows is that w is distributed U [0, 2]. All else equal, Alice would be equally 
happy eating at the Cafe and the Diner, but Bob prefers eating at the Cafe by an 
amount b that varies from day to day: assume that Bob knows the exactly value of b, 
while Alice knows only that b is distributed U [0, 3], independently of w. In addition, 
Alice and Bob get a benefit of 1 from having lunch together. Summarizing, with 
Alice as player 1 and Bob as player 2 the payo˙ matrix is 

C D 
C 1 − w, 1 − w + b −w, 0 
D 0, −w + b 1, 1 

(a) Formally model this situation as an incomplete information game. 

(b) Find a BNE, and prove that it is unique. How often do Alice and Bob have 
lunch together? 

Solution. (a) The set of players is given by {A, B}. The set of types is given by 
Θ = ΘA × ΘB, where ΘA = [0, 2] and ΘB = [0, 3]. The players’ sets of actions 
is given by AA = AB = {C, D}. The players’ payo˙s are given by ⎧ 

1 − w if a = (C, C),⎪⎨−w if a = (C, D), 
uA(a, θ) = 

0 if a = (D, C),⎪⎩ 
1 if a = (D, D), 

where θ = (w, b), and ⎧ 
1 − w + b if a = (C, C),⎪⎨0 if a = (C, D), 

uB (a, θ) = 
−w + b if a = (D, C),⎪⎩ 
1 if a = (D, D). 

The prior p is given by the uniform distribution over Θ. 

(b) We first argue that any BNE must be in threshold strategies. Let si(θi) denote 
the action chosen by type θi of player i in a BNE. The expected payo˙ to type 
w of Alice from choosing C is given by 

P (sB (θB ) = C) (1 − w) − P (sB(θB) = D) w, 
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whereas her payo˙ from choosing D is given by 

P (sB (θB ) = D) . 

Since the payo˙ from C is a strictly decreasing function of w and the payo˙ 
from D is independent of w, in any BNE, there exists some w ∗ ∈ [0, 2] such 
that Alice chooses C if and only if w ≤ w ∗ . The expected payo˙ to type b of 
Bob from choosing C is given by 

P (sA(θA) = C) (1 − E[w|sA(θA) = C] + b)+P (sB(θB) = D) (−E[w|sA(θA) = D] + b) , 

whereas her payo˙ from choosing D is given by 

P (sA(θA) = D) . 

The payo˙ to Bob from C is strictly increasing in b while his payo˙ from D is 
independent of b. Therefore, there exists some b∗ such that Bob chooses C if 
and only if b ≥ b∗ . 

There are several cases to consider. First suppose that w ∗ = 2. Then, Alice 
always chooses C. The payo˙ to type b of Bob from C is then given by b, 
whereas the payo˙ from D is given by 0. Therefore, Bob must always choose 
C. This implies that the payo˙ to type w of Alice from choosing C is given by 
1 − w, and the payo˙ from choosing D is given by 0. Thus, Alice would choose 
C if and only if w ≤ 1, a contradiction. 

Next suppose that w ∗ = 0, that is, Alice always chooses D. The payo˙ to type 
b of Bob from C is then given by −1+ b, while the payo˙ from D is given by 1. 
So Bob must choose C if an only if b ≥ b∗ = 2. This implies that the payo˙ to 
type w of Alice from choosing C is given by 1 (1 − w) − 2 w = 1 − w, while her 

3 3 3 
payo˙ from choosing D is given by 2

3 > 1
3 − w. This confirms the assumption 

that w ∗ = 0. Thus, a threshold strategy with w ∗ = 0 and b∗ = 2 is a BNE. We 
next argue that this is the only BNE. 

Next suppose that b∗ = 0, that is, Bob always chooses C. Then the payo˙ to 
type w of Alice from choosing C is given by 1−w, whereas her payo˙ to choosing 
D is given by 0. Thus, Alice chooses C if and only if w ≤ 1. The payo˙ to type b 
of Bob from choosing C is thus given by 1/2(1/2+b)+1/2(−3/2+b) = −1/2+b, 
whereas his payo˙ from choosing D is given by 1/2. Therefore, Bob chooses C 
if and only if b ≥ 1, a contradiction. 

Next suppose that b∗ = 3, that is, Bob is always choosing D. Then the payo˙ 
to type w of Alice from choosing C is given by −w, whereas her payo˙ from 
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choosing D is given by 1. Therefore, Alice will always choose D. But then the 
payo˙ to type b of Bob from choosing C is given by −1+ b, whereas his payo˙ 
from choosing D is given by 1. Thus, Bob will choose C if and only if b ≥ 2, a 
contradiction. 

The only remaining case is where w ∗ ∈ (0, 2) and b∗ ∈ (0, 3). If w ∗ ∈ (0, 2), 
Alice needs to be indi˙erent between C and D when w = w ∗ , that is, 

P (sB(θB) = C) − w ∗ = P (sB(θB) = D) = 1 − P (sB (θB ) = C) . 

This implies that 

∗ 3 − b∗ 

w = 2P (sB(θB) = C) − 1 = 2 − 1. 
3 

Likewise, Bob needs to be indi˙erent between C and D when b = b∗ , that is, � � � �∗ ∗ ∗ ∗ ∗ w w 2 − w 2 + w 2 − w 
1 − + b ∗ + − + b ∗ = . 

2 2 2 2 2 

Solving the above the equations for w ∗ and b∗ , we get w ∗ = −1 and b∗ = 3, a 
contradiction. 

In the unique BNE, Alice chooses D with probability 1 and Bob chooses D 
with probability 2/3, so Alice and Bob have lunch together 2/3 of the time. 
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Problem 3. Consider a seller who must sell a single good. There are two potential 
buyers, each with a valuation for the good that is drawn independently and uniformly 
from the interval [0, 1]. The seller will o˙er the good using a second-price sealed-bid 
auction, but he can set a “reserve price” of r ≥ 0 that modifies the rules of the auction 
as follows: If both bids are below r then neither bidder obtains the good and it is 
destroyed. If both bids are at or above r then the regular auction rules prevail. If 
only one bid is at or above r then that bidder obtains the good and pays r to the 
seller. 

(a) Compute the seller’s expected revenue as a function of r. 

(b) What is the optimal value of r for the seller? 

(c) Intuitively, why does the seller benefit from setting a non-zero reserve price? 

Solution. (a) By an argument identical to the argument in lecture notes, it is 
weakly dominant for the bidders to bid their true valuations. We next com-
pute the expected revenue of the seller. With probability r2 , both valuations 
are below r, and the seller gets zero. With probability 2r(1 − r), only one 
valuation is above r, and the seller gets r. With probability (1 − r)2 , both 
valuations are above r, and the sellers gets the minimum of the two valuations. 
The expected value of the minimum of the two valuations conditional on both 
being above r is equal to the expected value of the minimum of two random 
variables uniformly distributed over [r, 1]. By the formula in the notes, this is 
exactly equal to 2r 

3
+1 . Therefore, the expected revenue of the seller is given by 

2r + 1 1 4 
0r 2 + r(2r(1 − r)) + (1 − r)2 = + r 2 − r 3 . 

3 3 3 

(b) Taking the first-order condition with respect to r and setting the derivative 
equal to zero we get r = 0 and r = 1/2. Checking the second-order conditions, 
we find that r = 0 is a local minimum while r = 1/2 is the global maximum of 
the function over [0, 1]. Therefore, the optimal value of r is equal to r = 1/2, 
leading to an expected revenue of 5/12 to the seller. 

(c) Intuitively, setting a non-zero reserve price is like adding an additional bidder 
who always bids r. Since the expected payo˙ to the seller is increasing in the 
number of bidders, adding a bidder increases the payo˙ to the seller. 
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