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14.15/6.207 Networks Practice Problems 

These problems are for practice only and are not to be turned in. You are re-
sponsible for this material for the final exam. You should be able to do the first two 
problems now and should be able to answer the remaining two problems after the final 
week’s lectures. 

Problem 1. Alice and Bob are trying to meet for lunch. They can each go to the 
Cafe or the Diner. Alice’s oÿce is near the Cafe, so she knows the exact length of 
time w it would take to wait in line at the cafe. Bob’s oÿce is far from the Cafe, so 
all he knows is that w is distributed U [0, 2]. All else equal, Alice would be equally 
happy eating at the Cafe and the Diner, but Bob prefers eating at the Cafe by an 
amount b that varies from day to day: assume that Bob knows the exactly value of b, 
while Alice knows only that b is distributed U [0, 3], independently of w. In addition, 
Alice and Bob get a benefit of 1 from having lunch together. Summarizing, with 
Alice as player 1 and Bob as player 2 the payo˙ matrix is 

C D 
C 1 − w, 1 − w + b −w, 0 
D 0, −w + b 1, 1 

(a) Formally model this situation as an incomplete information game. 
Solution. The set of players is given by {A, B}. The set of types is given by 
Θ = ΘA × ΘB, where ΘA = [0, 2] and ΘB = [0, 3]. The players’ sets of actions 
is given by AA = AB = {C, D}. The players’ payo˙s are given by ⎧ 

1 − w if a = (C, C),⎪⎨−w if a = (C, D), 
uA(a, θ) = 

0 if a = (D, C),⎪⎩ 
1 if a = (D, D), 

where θ = (w, b), and ⎧ 
1 − w + b if a = (C, C),⎪⎨0 if a = (C, D), 

uB (a, θ) = 
−w + b if a = (D, C),⎪⎩ 
1 if a = (D, D). 

The prior p is given by the uniform distribution over Θ. 

Find a BNE, and prove that it is unique. How often do Alice and Bob have 
lunch together? 
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Solution. We first argue that any BNE must be in threshold strategies. Let 
si(θi) denote the action chosen by type θi of player i in a BNE. The expected 
payo˙ to type w of Alice from choosing C is given by 

P (sB (θB ) = C) (1 − w) − P (sB(θB) = D) w, 

whereas her payo˙ from choosing D is given by 

P (sB (θB ) = D) . 

Since the payo˙ from C is a strictly decreasing function of w and the payo˙ 
from D is independent of w, in any BNE, there exists some w ∗ ∈ [0, 2] such 
that Alice chooses C if and only if w ≤ w ∗ . The expected payo˙ to type b of 
Bob from choosing C is given by 

P (sA(θA) = C) (1 − E[w|sA(θA) = C] + b)+P (sB(θB) = D) (−E[w|sA(θA) = D] + b) , 

whereas her payo˙ from choosing D is given by 

P (sA(θA) = D) . 

The payo˙ to Bob from C is strictly increasing in b while his payo˙ from D is 
independent of b. Therefore, there exists some b∗ such that Bob chooses C if 
and only if b ≥ b∗ . 

There are several cases to consider. First suppose that w ∗ = 2. Then, Alice 
always chooses C. The payo˙ to type b of Bob from C is then given by b, 
whereas the payo˙ from D is given by 0. Therefore, Bob must always choose 
C. This implies that the payo˙ to type w of Alice from choosing C is given by 
1 − w, and the payo˙ from choosing D is given by 0. Thus, Alice would choose 
C if and only if w ≤ 1, a contradiction. 

Next suppose that w ∗ = 0, that is, Alice always chooses D. The payo˙ to type 
b of Bob from C is then given by −1+ b, while the payo˙ from D is given by 1. 
So Bob must choose C if an only if b ≥ b∗ = 2. This implies that the payo˙ to 
type w of Alice from choosing C is given by 1 (1 − w) − 2 w = 1 − w, while her 

3 3 3 
payo˙ from choosing D is given by 2

3 > 
3
1 − w. This confirms the assumption 

that w ∗ = 0. Thus, a threshold strategy with w ∗ = 0 and b∗ = 2 is a BNE. We 
next argue that this is the only BNE. 

Next suppose that b∗ = 0, that is, Bob always chooses C. Then the payo˙ to 
type w of Alice from choosing C is given by 1−w, whereas her payo˙ to choosing 
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D is given by 0. Thus, Alice chooses C if and only if w ≤ 1. The payo˙ to type b 
of Bob from choosing C is thus given by 1/2(1/2+b)+1/2(−3/2+b) = −1/2+b, 
whereas his payo˙ from choosing D is given by 1/2. Therefore, Bob chooses C 
if and only if b ≥ 1, a contradiction. 

Next suppose that b∗ = 3, that is, Bob is always choosing D. Then the payo˙ 
to type w of Alice from choosing C is given by −w, whereas her payo˙ from 
choosing D is given by 1. Therefore, Alice will always choose D. But then the 
payo˙ to type b of Bob from choosing C is given by −1+ b, whereas his payo˙ 
from choosing D is given by 1. Thus, Bob will choose C if and only if b ≥ 2, a 
contradiction. 

The only remaining case is where w ∗ ∈ (0, 2) and b∗ ∈ (0, 3). If w ∗ ∈ (0, 2), 
Alice needs to be indi˙erent between C and D when w = w ∗ , that is, 

P (sB(θB) = C) − w ∗ = P (sB(θB) = D) = 1 − P (sB (θB ) = C) . 

This implies that 

3 − b∗ 

w ∗ = 2P (sB(θB) = C) − 1 = 2 − 1. 
3 

Likewise, Bob needs to be indi˙erent between C and D when b = b∗ , that is, � � � �∗ ∗ ∗ ∗ ∗ w w 2 − w 2 + w 2 − w 
1 − + b ∗ + − + b ∗ = . 

2 2 2 2 2 

Solving the above the equations for w ∗ and b∗ , we get w ∗ = −1 and b∗ = 3, a 
contradiction. 

In the unique BNE, Alice chooses D with probability 1 and Bob chooses D 
with probability 2/3, so Alice and Bob have lunch together 2/3 of the time. 
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Problem 2. Consider a seller who must sell a single good. There are two potential 
buyers, each with a valuation for the good that is drawn independently and uniformly 
from the interval [0, 1]. The seller will o˙er the good using a second-price sealed-bid 
auction, but he can set a “reserve price” of r ≥ 0 that modifies the rules of the auction 
as follows: If both bids are below r then neither bidder obtains the good and it is 
destroyed. If both bids are at or above r then the regular auction rules prevail. If 
only one bid is at or above r then that bidder obtains the good and pays r to the 
seller. 

(a) Compute the seller’s expected revenue as a function of r. 

Solution. By an argument identical to the argument in lecture notes, it is weakly 
dominant for the bidders to bid their true valuations. We next compute the 
expected revenue of the seller. With probability r2 , both valuations are below 
r, and the seller gets zero. With probability 2r(1 − r), only one valuation is 
above r, and the seller gets r. With probability (1 − r)2 , both valuations are 
above r, and the sellers gets the minimum of the two valuations. The expected 
value of the minimum of the two valuations conditional on both being above r is 
equal to the expected value of the minimum of two random variables uniformly 
distributed over [r, 1]. By the formula in the notes, this is exactly equal to 
2r 
3
+1 . Therefore, the expected revenue of the seller is given by 

2r + 1 1 4 
0r 2 + r(2r(1 − r)) + (1 − r)2 = + r 2 − r 3 . 

3 3 3 

(b) What is the optimal value of r for the seller? 

Solution. Taking the first-order condition with respect to r and setting the 
derivative equal to zero we get r = 0 and r = 1/2. Checking the second-order 
conditions, we find that r = 0 is a local minimum while r = 1/2 is the global 
maximum of the function over [0, 1]. Therefore, the optimal value of r is equal 
to r = 1/2, leading to an expected revenue of 5/12 to the seller. 

(c) Intuitively, why does the seller benefit from setting a non-zero reserve price? 

Solution. Intuitively, setting a non-zero reserve price is like adding an additional 
bidder who always bids r. Since the expected payo˙ to the seller is increasing 
in the number of bidders, adding a bidder increases the payo˙ to the seller. 
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Problem 3 (Herding model). Jackson, Problem 8.6, pg. 254. 

Solution. Let’s start by computing the posterior probability of action B being bad 
conditional upon person 3 observing (B, B). 

If action B were bad, this would happen with probability (1 − p)2 + (1 − p)p/2: 
either both signals come up “good” indepeendently with probability (1 − p) or the 
first comes up “good,” the second “bad,” and the coin flip goes to “good.” On the 
other hand, conditional upon the action being “good”, this happens with probability 
p2 + p(1 − p)/2. Thus, by Bayes’ rule, the probability of “good” conditional upon 
seeing (B, B) is 

p2 + (1 − p)p/2 
(1)

(1 − p)2 + (1 − p)p + p2 

Now let’s suppose the third person sees (B, B) and their signal comes up “bad.” 
Their posterior probability of “good” being the truth is 

P(good|history)P(signal bad|good) ∝ p 2(1 − p) + p(1 − p)2/2.
P(signal bad) 

Their posterior probability of “bad” being the truth is 

P(bad|history)P(signal bad|bad) ∝ p(1 − p)2 + p 2(1 − p)/2.
P(signal bad) 

which is smaller! (We are ignoring the denomonator in (1) above and the denomona-
tor P(signal bad) from Bayes rule, which are the same for both terms we are compar-
ing). Thus, even if person 3’s signal is “bad,” they believe “good” is the most likely 
state of the world, and therefore would also play B. 

Persons 4, 5, . . . have no additional information, since all preceding persons after 
the first two will play B with probability 1 independently of their signal, so, by the 
exact same calculation, they will also play B. 
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Problem 4 (DeGroot learning). Consider the DeGroot learning model with N 
agents with initial belief vector x (0) = (x1 (0) , . . . , xN (0)) and an N × N , non-
negative, row stochastic matrix T such that, for every period t, we have 

x (t) = Tx (t − 1) . 

(a) Suppose that N = 3 and ⎛ 
3 1 1 

⎞ 

T = ⎝ 
5 
1 
4 

5 
1 
2 

5 
1 
4 
⎠ . 

0 1 
3 

2 
3 

What properties of this matrix guarantee that, for any initial belief vector x (0), 
the limit belief x ∗ = limt→∞ x (t) is well-defined? Compute x ∗ as a function of 
x (0). 

Solution. The right-stochastic matrix T is aperiodic and strongly connected, 
so we know from lecture that there is a unique limiting belief x ∗ that depends 
only on x(0). Moreover, it is given by s>x(0) where the weight vector s solves 

sT = s ⇐⇒ s(T − I) = 0 P 
and also satisfies i si = 1. Solving this linear system of equations by hand, or 
plugging them into Wolfram Alpha (or a similar tool) gives us s = ( 5 , 8 , 9 ).

22 22 22 

(b) Suppose that N = 3 and ⎛ ⎞ 
1 20 ⎝ 
3 3 ⎠T = 1 0 0 . 

1 0 0 

As a function of x (0), compute x (t) for every t ≥ 1. What is going on? 

[Hint: First compute T 2 and T 3 , then compute x (1), x (2), and x (3). You 
should notice a pattern.] 

Solution. We can compute that ⎛ ⎞ ⎛ 
1 2 

⎞ 
1 0 0 0 

1 2T 2 = ⎝0 
3 3 

⎠ , T 3 = T = ⎝1 0 
3 
0 
3 ⎠ 

1 20 1 0 0
3 3 
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Proceeding by inducton, we have T kx = T 2x if k is even and T kx = Tx if k is 
odd—the system is periodic. This means that x(t) = x(2) = T 2x(0) for t even 
and x(t) = x(1) = Tx(0) for t odd. The beliefs look like 

(x(0), Tx(0), T 2 x(0), Tx(0), T 2 x(0), Tx(0), T 2 x(0), . . .). 

(c) Prove that, for any N , if there exists an agent i such that Tii = 1 and Tji > 0 
for all j 6= i, then xj 

∗ ≡ limt→∞ xj (t) is well-defined and equal to xi (0) for all 
j 6= i. 

[Hint: Let Δ(t) = maxj∈N |xi (t) − xj (t)| and let T = minj 6=i Tji. Prove that 
Δ(t + 1) ≤ (1 − T )Δ (t) for all t. Show that this implies that each xj (t) must 
converge to xi (0) as t →∞.] 
Solution. As suggested by the hint, let’s define T = mink Tki > 0 and Δ(t) = 
maxk |xk(t) − xi(t)|. Firstly, notice that since Tii = 1 and the rows of T sum 
to 1, Tij = 0 for j 6= i and we must have xi(t) = xi(0) for all t by matrix 
multiplication. Then we can compute 

|xi(t + 1) − xj (t + 1)| = |xi(t) − xj (t + 1)| 
= |xi(t) − (Tx(t))j | 

nX 
= xi(t) − Tjkxk(t) 

k=1 P nSince k=1 Tjk = 1 this can be rewritten as 

nX 
= Tjk(xi(t) − xk(t)) 

k=1 

By the triangle inequality |a + b| ≤ |a| + |b|, this is at most 

nX 
≤ Tjk|xi(t) − xk(t)|

k=1 P 
Since Tjk = 1 − Tji ≤ 1 − T and Δ(t) = maxk |xk(t) − xi(t)|, this is atk 6=i 
most 

≤ (1 − T )Δ(t). 
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Since the above holds for every j 6= i, we can deduce that Δ(t+1) ≤ (1−T )Δ(t) 
which means that, since (1 − T ) < 1, we must have Δ(t) ↓ 0 as needed. We 
conclude that for each k, xk(t) → xi(0) as t →∞. 
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