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Plan 
Having covered basics of graph theory and random networks, now 
ready to start analyzing processes and behavior on networks. 

Start with classic models of “diffusion” (of a disease, idea, or 
product) through society. 

These are called compartmental models, because at each point 
in time each individual is in one of several states/“compartments.” 

I Susceptible (S): Individual has not yet been infected, and is 
susceptible to infection from others. 

I Infectious (I): Individual is currently infected, and can pass 
the infection to others. 

I Removed (R): Individual is no longer infected and cannot be 
infected again, either due to immunity or death. 

These models are very important in fields like epidemiology and 
marketing. As we’ll see, there are also tight (and somewhat 
surprising) connections with the ER and configuration models. 
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Different Compartmental Models: Preview 

By including different compartments in the model, we can capture 
different types of phenomena. We’ll cover three different 
compartmental models. 

SI Model: Once you’re infectious, stay infectious forever. 

I As long as the network is connected or there’s any mixing in 
society, the infection eventually reaches everone. 

I This doesn’t describe most diseases, but does describe the 
spread of a superior idea or product that is eventually adopted 
by everyone. 

I Such ideas or products can also be discovered through 
processes other than infection by others. 

I The Bass model is a generalization of the SI model that 
allows such “innovation” in addition to 
“imitation”/“infection” by others. 3



Different Compartmental Models: Preview (cntd.) 

SIR Model: Once infected, you’re infectious for a while, and then 
recover forever. 

I A good model of diseases you can only catch once, like chicken 
pox, measles, or a particular strain of influenza or Covid. 

I Now the disease typically doesn’t reach everyone, because 
eventually the number of susceptible people is low enough 
that most infectious people recover without infecting anyone 
else. (More precisely, reproduction number Rt drops below 1.) 

I The point where this happens is the herd immunity 
threshold, which plays a key role in the model. 

I Eventually, everyone is recovered, and the epidemic ends. 
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Different Compartmental Models: Preview (cntd.) 

SIS Model: Like SIR, but once you recover you can get infected 
again. 

I A good model of diseases you can catch many times, like the 
cold. 

I Now the epidemic never ends, and instead a steady state is 
reached, where at each point in time the number of people 
who recover equals the number who get infected. 
(That is, Rt = 1.) 
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Population Heterogeneity 
The simplest versions of all these models assume a homogeneous 
population: everyone is equally likely to meet everyone else. 

A tractable, realistic, and important extension of the model is to 
instead assume heterogeneous contact rates: some people are 
more active than others (and hence have more contacts each 
period). 
I E.g., in the SIR model, the herd immunity threshold can be 
much lower with heterogeneous contact rates, because 
high-activity people get sick first and then recover. 

I Also affects how we can fight epidemics: e.g., should we 
prioritize high-contact people like essential workers for 
vaccination? 

We’ll consider versions of the SIR and SIS models with both 
homogeneous and heterogeneous populations. 
I Next week: more on targeting and other strategic aspects of 
diffusions. 
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Diffusion of Innovations 

© The Econometric Society. All rights reserved. This content is 
excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use/ 

Percentage of total corn acreage planted with hybrid seed (Ryan 
and Gross, 1943; Griliches, 1957). 

I S-shaped adoption curves indicative of social learning / 
“word-of-mouth”. 

I What kind of formal models generate this pattern? 
I When is adoption S-shaped vs. concave? 
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Bass Model 
The Bass model simply tracks how a product or technology spreads 
through a large population when individuals can adopt the 
innovation as a result of innovation (discovering it on their own) 
or imitation (discovering it from others). 

I Let F (t) be the fraction of the population who have adopted 
the product by time t. 

I Let p be the “innovation rate”. 
I Let q be the “imitation rate”. 

The Bass model is given by the difference equation 

F (t + 1) − F (t) = (1 − F (t)) (p + qF (t)) 

I Of fraction 1 − F (t) who haven’t yet adoped, fraction p 
innovate (adopt on their own) and fraction qF (t) meet an 
adopter (F (t)) and imitate (q; copy the adopter). 

I Assume p + q ≤ 1, so F (t + 1) stays below 1. 
I The SI model is the special case where p = 0. 
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Analysis 
Easier and more common to analyze the continuous-time version of 
the model: 

Ḟ (t) = (1 − F (t)) (p + qF (t)) , 

with F (0) = 0 
(where dot denotes time derivative, Ḟ (t) = dF (t) /dt). 

This is a nonlinear differential equation, but it has a closed-form 
solution 

−(p+q)t1 − e
F (t) = q . 

e−(p+q)t1 + p 

I The resulting curve F (t) is the adoption curve of the 
product. 

I Note: the sum p + q scales time (how “fast” the innovation 
diffuses), while the ratio q determines the shape of the curve. p 

I If p > q the adoption curve is concave; if p < q the adoption 
curve is S-shaped. 

9



Concave or S-Shaped Adoption? 
Whether adoption curve is concave or S-shaped depends on 
whether it is concave or convex at low adoption level 
(it’s always concave at high adoption levels, as the market 
becomes saturated). 

Whether curve is concave or convex at low adoption levels is 
determined by a race between two forces: 

I Increasing adoption speeds up adoption as there are more 
adopters to imitate. 
This force is stronger when q is higher. 

I Increasing adoption slows down adoption as there are fewer 
non-adopters who can innovate. 
This force is stronger when p is higher. 

An easy calculation shows that if p < q then the first force “wins” 
and adoption is S-shaped; while if p > q then the second force 
wins and adoption is concave. 
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In Reality, p is Usually Less Than q 
Marketing researchers have attempted to estimate the parameters 
of the Bass model for a wide range of products. 

I Typical estimates find p ≈ 0.03 and q ≈ 0.4 (where t is 
measured in years). 

I These numbers should be taken with a large grain of salt, but 
the finding that the imitation rate is often an order of 
magnitude greater than the innovation rate appears to be 
robust. 

I This provides an explanation for the prevalence of S-shaped 
adoption curves, such as the the diffusion of hybrid corn in the 
US Midwest. 

In addition to explaining S-shaped adoption curves, the Bass model 
can also be used to predict the future path of adoption based on 
the early adoption pattern. 

I Same thing happens in the SIR model. This is a main way of 
predicting the path of an epidemic. 
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Adoption Curve (p=0.03, q=0.38) 
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New Adopters (p=0.03, q=0.38) 

13 © source unknown. All rights reserved. This 
content is excluded from our Creative 
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The SIR Model 
Let’s turn to the classic SIR epidemiology model. 
I Like Bass model with “adopter”=“infectious”, eventual 
recovery from infection, and no innovators. 

I The SIR model was the main model used early on to predict 
the path of Covid. We will see what it’s strengths and 
weaknesses are in this regard. 

At each point in time t, the population is divided into three 
compartments: 
I Fraction S (t) are susceptible 
I Fraction I (t) are infectious 
I Fraction R (t) are recovered or removed 
I For each t, we have S (t) + I (t) + R (t) = 1. 

The model has two parameters: 
I β =transmission rate 
I γ =recovery rate 
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SIR Model: Equations 
The SIR model is defined by the following three equations: 

Ṡ (t) = −βS (t) I (t) (1) 

I Each of S (t) susceptible people meets an infectious person 
w/ prob I (t). When this happened, gets infected w/ prob β. 

I S (t) decreases over time. 

İ (t) = βS (t) I (t) − γI (t) (2) 

I Inflow into state I : βS (t) I (t) susceptible people get 
infected. 

I Outflow from state I : γI (t) infected people recover. 
I Over time, I (t) first increases and then decreases. 

15Ṙ (t) = γI (t) (3) 

I The γI (t) infected people who recover go to state R. 



The Basic Reproduction Number 
With transmission rate β and recovery rate γ, on average an 
infectious person will infect β/γ others before she recovers, if 
everyone else is susceptible. 
I The number β/γ is called the basic reproduction number 
of the disease, and is denoted by R0. 

Since β = γR0, we can rewrite the SIR equations as 

Ṡ (t) = −γR0S (t) I (t) 

İ (t) = γR0S (t) I (t) − γI (t) 

Ṙ (t) = γI (t) . 

Note that Ṡ , İ and Ṙ are all multiplied by γ. 
I This means that, once we fix R0 = β/γ, γ just changes the 
timescale of the epidemic process. 

I Therefore, quantities that don’t directly reference time (e.g., 
herd immunity threshold, how many people will ultimately 
become infected) depend only on R0. 
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SIR Model: Illustration 
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SIR Model: Observations 
The SIR model cannot be completely solved in closed form, but it’s 
easy to evaluate numerically. 

We can also make some important analytical observations: 

I The infectious share of the population is maximized when 
İ (t) = 0, or 

R0S (t) = 1. 

I This is the herd immunity threshold: the point where S (t) 
has dropped far enough that an infected person infects on 
average 1 other person before she recovers. 

I But “herd immunity” is a bit of a misnomer: people keep 
getting infected after herd immunity is reached, albeit at a 
decreasing rate. 

I R (t) keeps increasing and asymptotes to a value 
R (∞) = 1 − S (∞). 

I The difference between the herd immunity threshold and 
R (∞) is the degree of overshooting. 
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SIR Model: History 

The SIR model was developed by Kermack and McKendrick in 
1927, building on work by Ross and Hudson in 1917. 

Ronald Ross: British doctor who won Nobel prize for discovering 
that mosquitos spread malaria. Also an amateur novelist, poet, 
artist, and mathematician. 

Hilda Hudson: English Algebraic geometer, first woman to speak at 
the International Congress of Mathematicians. Also wrote on the 
relationships between math and religion. 

William Ogilvy Kermack: Scottish biochemist. Blind for almost his 
whole career due a chemical explosion in his lab. 

Anderson Gray McKendrick: Scottish doctor, epidemiologist, and 
amateur mathematician. Several contributions to models of 
epidemics and population growth. 
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How Many People Ever Get Sick? 
Solving for R (∞) (share of people who ever get sick): 

I Since Ṡ (t) = −γR0S (t) I (t) and Ṙ (t) = γI (t), we have 

Ṡ (t) ˙= −R0R (t) .
S (t) 

I The solution to this differential equation with S (0) = 1 is 

−R0 R (t)S (t) = e . 

I Since I (t) eventually goes to 0, we have 

−R0R (∞)1 = S (∞) + R (∞) = e + R (∞) . 

I Therefore, 
−R0 R (∞)R (∞) = 1 − e . 
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How Many People Ever Get Sick? (cntd.) 
We showed that the share of people who ever get sick is 

−R0R (∞)R (∞) = 1 − e . 

Intuition: 
I R (∞) people ultimately get sick. 
I Each has on average R0 meetings that would cause infection 
with someone who is susceptible. 

I The distribution of the number of such meetings is Poisson 
(since meetings are independent). 

−R0 R (∞)I Therefore, probability of not getting infected is e . 

Interestingly, R (∞) is exactly the size of the giant component in 
the ER model with λ = R0! 

This is useful: for example, we know what R (∞) looks like as a 
function of R0. 
I R (∞) = 0 whenever R0 ≤ 1, then increases rapidly as a 
concave function of R0. 
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Other Lessons from the SIR Model 
I I (t) grows exponentially when S (t) ≈ 1 and falls 
exponentially when S (t) ≈ 0, so roughly normally distributed. 

I If only temporary interventions to slow the disease are 
available (e.g., lockdowns but no vaccines), it is impossible to 
avoid reaching the herd immunity threshold, but overshooting 
can be reduced. 

I If impose lockdown as soon as herd immunity is reached, this 
brings R (∞) down to 1 − 1/R0. 

I So, can be substantial gains from lockdowns even if 
vaccines/improved treatments do not arrive, but greater gains 
from locking down until vaccines/treatments arrive (but also of 
course greater costs from longer lockdowns). 

I Vaccinating fraction π of the population reduces S (0) to 
1 − π (and increases R (0) to π), which can greatly reduce 
R (∞). 

Next class, more such lessons in the context of Covid-19. 
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Heterogeneous-Agent SIR 

The SIR equations can easily be generalized to allow K types of 
people with different β’s, and hence different R0’s. 

I For simplicity, assume 1/K people of each type. 
I Assume meetings are uniform, so each meeting of a type-i 
agent is with a type-j agent with probability R0j / ∑k R0k . 

23



Heterogeneous-Agent SIR (cntd.) 
This model is harder to analyze, but can show that the initial 
growth rate of the epidemic is now, rather than R0 − 1 as in the 
homogeneous-agent model, � � 

R0 − 1 = 

R0 equals the reproduction number (conditional expected 

¯ 

¯ 

E R2 0i − 1. 
E [R0i ] 

I 

degree) in the configuration model with degree distribution 

¯ 

given by the distribution of R0i ’s. 

I Intuitively, variance in the R0i ’s accelerates the epidemic early 
on, because infections concentrate among the most active 
agents. 

I However, same force implies that herd immunity is reached 
earlier (i.e., with more susceptible agents) in the 
heterogeneous-agent SIR model than in the 

R0.
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The SIS Model 

The SIS model differs from the SIR model in that now an 
individual becomes susceptible again after recovering. 

The equations of the SIS model are 

Ṡ (t) = γI (t) − βS (t) I (t) , 

İ (t) = βS (t) I (t) − γI (t) , 

where again β is the transmission rate and γ is the recovery rate 
(and S (t) + I (t) = 1). 

With R0 = β/γ, can rewrite as 

Ṡ (t) = γI (t) − γR0S (t) I (t) , 

İ (t) = γR0S (t) I (t) − γI (t) . 
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Steady-State Infection Level 
We could analyze the initial spread of the epidemic in the SIS 
model similarly to the SIR model, but the most important 
prediction of the SIS model is the steady-state infection level. 

The steady-state infection level I is given by 

Ṡ = γI − γR0 (1 − I ) I = 0. 

Solving for I gives � 
1 − R 

1
0 
if R0 ≥ 1

I = .
0 if R0 < 1 

I Somewhat similar shape to size of giant component as a 
function of λ. 

If vaccinate (remove) fraction π of the population then 
S (t) + I (t) = 1 − π, so the steady-state equation infection level 
is reduced to 1 − π − 1 .R0 
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Heterogeneous-Agent SIS Model 

Since the steady state of the SIS model is so simple, we can fully 
solve it even with heterogeneous agents. 

I Preview: a main result will be that the steady-state infection 
level is positive if and only if basic reproduction number > 1, 
as in the earlier models. 

I Let P (d) be the share of the population with d meetings 
(“degree”) each period. 

I Assuming uniform matching: each meeting is with a degree-d 
individual with probability 

P (d) d 
. hdi 

I (Like heterogeneous-agent SIR, or configuration model.) 27



Heterogeneous-Agent SIS (cntd.) 

I Let Id (t) be the share of degree-d nodes infected at time t. 
I Then each meeting is with an infected individual with 
probability 

∑d P (d) dId (t)
θ (t) = . hdi 

I This is a useful measure of the infection level. 
I Note: different from share of people who are infected, which 
is ∑d P (d) Id (t). 
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Heterogeneous-Agent SIS (cntd.) 

For each degree d , Id (t) evolves according to 

İd (t) = β d (1 − Id (t)) θ (t) − γId (t)| {z } | {z } 
susceptible→infected infected→susceptible 

Hence, at a steady-state, for each d we have 

βd (1 − Id (t)) θ (t) = γId (t) , 

or 
dRθ

Id = ,
dRθ + 1 

where R = β/γ. 

I Note: higher-degree nodes have higher steady-state infection 
rates. 29




 �

Steady-State Infection Level 
We can now compute the steady-state infection level. 

Since 
dRθ

Id = for each d
dRθ + 1 

and 
∑d P (d) dId

θ = ,hdi 
we see that there is a steady state with infection level θ if and only 
if 

P (d) d2Rθ
θ = ∑ . hdi (dRθ + 1)d 

This formula is reminiscent of the formula d2 / hdi for expected 
neighbor’s degree: both formulas account for oversampling of 
high-degree nodes; here we also have the feature that high-degree 
nodes have higher steady-state infection levels. 
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Steady-State Infection Level 

There is a steady state with infection level θ if and only if 

P (d) d2Rθ
θ = ∑ hdi (dRθ + 1)d 

I θ = 0 is always a steady-state: if no one is infected, system 
stays that way. 

When is there a solution with θ > 0? 

I We’ll see that there is a positive steady-state infection level iff 
hd 2 iR hd i > 1: that is, iff basic reproduction number exceeds 1. 
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Fixed Points 

To see when there is a positive steady-state infection level θ, we 
use the mathematical idea of a fixed point of a function. 

I A fixed point of a function f (x) is a value x such that 
f (x) = x . 

I That is, a point where f (x) crosses the 45◦ line. 

Let 
P (d) d2Rθ

H (θ) = ∑ . hdi (dRθ + 1)d 

I If the current infection level is θ, the infection level drifts 
towards H (θ). 

I The steady-state levels of θ are precisely the fixed points of H. 
I There is a positive steady-state infection level iff H has a 
non-zero fixed point. 
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Steady-State Infection Level (cntd.) 

P (d) d2Rθ
H (θ) = ∑ 

d 

. hdi (dRθ + 1) 

I H (0) = 0, H (1) < 1, and H (θ) is increasing and strictly 
concave in θ. 

I Therefore, H has a non-zero fixed point iff H 0 (0) > 1. 

Differentiate H (θ) to find 

H 0 (θ) = ∑ 
d 

Plug in θ = 0 to find 

P (d) d2R 

hdi (dRθ + 1)2 
. 

H 0 (0) = ∑ 
d 

P (d) d2R d2 

hdi = R . hdi 
Hence, there is a positive steady-state infection level iff 

d2 
R > 1. 
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Steady-State Infection Level (cntd.) 

There is a positive steady-state infection level iff 

d2 
R > 1. hdi 

That is, iff reproduction number exceeds 1. 

Examples: 

I When d is the same for everyone (homogeneous SIS), the 
threshold is Rd > 1, as we saw. 

I For power-law distributions (with γ < 3), d2 is divergent, 
so this condition holds for any positive R. 
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Summary 

I The Bass model is a classic model of the diffusion of 
innovations via innovation and imitation, which generates 
S-shaped adoption curves. 

I The SIR model is a classic model of diseases you can only get 
once. The disease eventually dies out. Key concepts are herd 
immunity and overshooting. 

I The SIS model is a classic model of diseases you can get many 
times. The key concept is the steady-state infection level. 

I Both the SIR and SIS models behave differently in 
homogeneous and heterogeneous populations. Understanding 
hetereogeneity is important for predicting the course of the 
epidemic and assessing possible interventions. 
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