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Growing Random Networks 
So far, have focused on static random graph models, where edges 
among n nodes are formed “all at once” according to some 
pre-specified probability distribution. 
I E.g. ER model, configuration model, small-worlds model 

In reality, most networks form dynamically, where new nodes are 
born over time and form attachments to existing nodes when 
they’re born. 
I Consider the creation of web pages. When each web page is 
designed, it includes links to existing pages. 

I Also: friendship networks, citations, professional contacts. 

Evolution over time introduces a natural heterogeneity to nodes: 
some nodes are older than others, tend to have higher degrees. 
I Correspondingly, these models often end up generating 
networks with some realistic features. 

I Also, dynamics provide an explanation for why we get a 
particular degree distribution. 
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Power Laws 
An important realistic feature that often arises in dynamic models 
is extremely imbalanced degrees. 

I E.g. in many different Web snapshots, it has been observed 
that the distribution over websites of the number of in-links 
(or out-links) approximates a power law distribution, where 
the fraction of websites with k links is approximately 
proportional to k−α , for α between 2 and 3. 

Many social, economic, and biological phenomena are 
well-approximated by power laws. 

I Population of cities (with α ≈ 1, so NYC≈2xLA, 3xChicago). 
I Number of employees of firms (with α ≈ 1). 
I Top incomes/wealth (with α > 1, perhaps ≈ 2 for income and 
≈ 1.5 for wealth, so income is more equal than wealth, and 
both are more equal than city or firm sizes). 

I Number of copies of a gene in a genome. 
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Power Laws (cntd.) 

Caveat: Sometimes people claim that anything with fatter tails 
than exponential is a power law, even in cases where distribution is 
not very close to a true power law. 

At end of lecture, return to this and compare power laws with 
other “heavy-tailed” distributions. 
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Power Laws (cntd.) 
Formally, a nonnegative random variable X has a power law 
distribution if its tail falls polynomially with power α: formally, 

P (X ≥ x) ∼ cx−α 

for constants c > 0 and α > 0, where f (x) ∼ g (x) means 
f (x )limx →∞ = 1. (Also called “fat-tailed.”)g (x ) 

An example of a commonly used power law distribution is the 
Pareto distribution, given by � �−αx 

P (X ≥ x) = 
t 

for some α > 0 and t > 0. 

I X is supported on [t, ∞) . 
−α−1I The density function is f (x) = αtαx . 

I If α ≤ 2, then X has infinite variance. 
I If α ≤ 1, then X also has infinite mean. 
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Examples 
A simple test for when a data-set exhibits a power-law distribution 
is to plot the counter-cumulative distribution function or the 
density function on a log-log scale and see if it looks linear. 
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History of Power Laws 
Power laws have been observed in a variety of fields for some time. 

Earliest standard reference is to Pareto in 1897, who introduced 
the Pareto distribution to describe income distributions. 
I Pareto observed that there are many more individuals with 
large fortunes than would appear in Gaussian or other 
common distributions. 

Another early reference is Zipf 1916, in describing city sizes and 
English word frequences. 
I Zipf’s law: the frequence of the j th most common word in 
English (or other common languages) is proportional to j−1. 

I “the”=2x“of”=3x“and”. 

The ideas were further develped by Simon 1955, who showed that 
power laws arise when “the rich get richer.” 
I As we’ll see, power laws can arise when the amount you get 
depends on the amount you already have. 
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Rich-Get-Richer 
The rich-get-richer mechanism is a plausible explanation for many 
examples of power laws. 

I A city grows in proportion to its current population as people 
have children. 

I Large fortunes may be generated by earning a similar rate of 
return on a larger initial fortune. 

I Gene copies arise in part due to accidental duplications, which 
occur roughly in proportion to the number of existing copies. 

In all of these examples, older nodes will be much “richer” than 
younger nodes, so the cross-sectional distribution of nodes will 
have a fat tail. 

I Cities that have been growing for longer are bigger. 
I Fortunes that have been accruing compound interest for 
longer are bigger. 

I Genomes contain more copies of older genes. 

8



Rich-Get-Richer (cntd.) 

Caveat: there’s more to “rich-get-richer” than age. 

I Big cities have something going for them that attracts people, 
and then this something together with time for reproduction 
leads to growth. 

I However, a well-established regularity is that the growth rate 
of cities is independent of their size. So small “initial 
differences” in population do have a large effect. 

I For fortunes and genomes, time can be even more of a 
dominant factor. 

Our point is not that in reality age is always the dominant factor, 
but rather that a very simple model where age is the only 
dimension of intrinsic heterogeneity is already one way to generate 
power laws. 9



Rich-Get-Richer (cntd.) 

The rich-get-richer mechanism implies high sensitivity to initial 
conditions/fluctuations. 

I Salganik, Dodds, and Watts (2006) created a music download 
site with 48 obscure songs. 

I Each visitor to the site can listen to the songs and is also 
shown the current download count for each song. 

I Each visitor is randomly assigned to one of 8 “parallel copies” 
of the site, which started out identically. 

I Final market share of different songs varied widely– more than 
can be explained by chance if each visitor had decided what to 
download independent of the download counts. 
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Cumulative Advantage/Preferential Attachment 

Price (1965) applied these ideas to networks, with a particular 
emphasis on citation networks. 

I Found that in-degrees (the number of times a paper has been 
cited) have power law distributions. 

I His explanation was that an article would gain citations over 
time in a manner proportional to the current number of 
citations. 

I This is exactly what would happen if researchers find articles 
by reading the references of articles they already know. 

I Price called this dynamic link-formation process cumulative 
advantage. 

Today this process is called preferential attachment after the 
influential model of Barabasi and Albert (1999) that we’ll cover 
today. 
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Uniform Attachment Model 
Before studying the preferential attachment model, we study a 
dynamic variation on the ER model, where nodes are born over 
time and form m links to existing nodes when born, uniformly at 
random. 

This is called the uniform attachment model. Features: 
I Older nodes have higher expected degrees. 
I But since links are formed randomly, only very old nodes have 
degrees much higher than average. 

I Specifically, we will see that the fraction of nodes with degree 
− d −m

greater than d equals e m . 
I This exponential degree distribution is similar to the Poisson 
distribution in the usual ER model. In particular, it exhibits 
“thin tails.” 

I So the uniform attachment model is a dynamic model of 
network formation, but it does not generate a power-law 
degree distribution. 
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Uniform Attachment Model: Details 

Nodes are born over time and randomly form links to existing 
nodes when born. 

I Index the nodes by their birth order, so node i is born at date 
i , for i = 0, 1, . . . . 

I At birth, a node forms m undirected links with existing nodes. 
Let di (t) be the degree of node i at time t. 

We consider a convenient version of this model where dt (t) = m 
for all t > m, and for t ≤ m the new node links with everyone. 

I Equivalently, the first newborn node is born at time 
t = m + 1, and the pre-existing network at that point is the 
complete network on m nodes. 
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Mean-Field Approximation 
In this model, analyzing the distribution of realized networks is 
challenging. 
I E.g. The highest degree nodes are very likely to be the oldest 
ones, so if by chance the old nodes are slow to pick up links 
the number of high-degree nodes will look very different. 

It is much easier to keep track of the evolution of expected 
degrees over time. 
I Keeping track of the expected properties of a stochastic 
process rather than the realized properties is called 
mean-field approximation. 

I In this case, we’ll also track expected degrees as if the model 
were in continuous time rather than discrete time. 

I This lets us characterize the evolution of expected degrees 
according to simple differential equations. 

I This is a second layer of approximation, but the error 
introduced here is smaller and easier to quantify than that 
introduced by the mean-field approximation. 
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Evolution of Expected Degrees 
Initial condition: dt (t) = m for all t. 

Starting time at t = m + 1, the change in the expected degree of 
node i at time t > i is given by 

d m
di (t) = ,

dt t 

since each new node links randomly links to m of the t existing 
nodes. 

I Rate of forming new links falls with 1/t due to increased 
competition for links. 

This differential equation has solution (for t ≥ i) 

t
di (t) = m + m log .

i 

I We next use this solution to derive an approximation to the 
degree distribution. 
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Distribution of Expected Degrees 
Note that the expected degrees of nodes are increasing over time. 

I If we ask how many nodes have expected degree ≤ 100 at 
time t and we know that a node born at time τ has expected 
degree = 100 at time t, then we are equivalently asking how 
many nodes were born on or after time τ. 

I At time t, this fraction is 1 − τ (assuming τ > m).t 

Hence, for any degree d and time t, let i (d) be a node such that 
i (d )di (d ) (t) = d . The resulting CDF is Ft (d) = 1 − .t 

We can solve for i (d) according to 

t i (d) − d −m 
d = m + m log ⇐⇒ = e m ,

i (d) t � � 
for d < m 1 + log t (the maximum expected degree at time t).m � � 
Hence, for d < m 1 + log t , the fraction of nodes with expected m 

− d −m
degree less than d is Ft (d) = 1 − e m . 
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Distribution of Expected Degrees (cntd.) � � 
We showed that, for d < m 1 + log t , the fraction of nodes with m 

− d −m
expected degree greater than d equals e m . 

I For t = ∞, this is an exponential distribution with support 
[m, ∞) and mean 2m. 

I Exponential, “thin-tailed” distribution, similar to usual ER. � � 
I Interestingly, for d < m 1 + log t , Ft (d) does not depend m 
on t! 

I How is this possible? 
I The maximum expected degree increases over time, but more 
and more nodes have smaller expected degrees.� � 

I Fraction of nodes with d less than any d0 < m 1 + log t ism 
constant over time. � � 

I Fraction of nodes with d = m 1 + log t decreases over timem 
as population grows. 

I It can be proved that, as t → ∞, Ft (d) is in fact the 
distribution of realized degrees (not just expected degrees), 
but the proof is beyond our scope. 
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Preferential Attachment Model 
As in the uniform attachment model: 
I Nodes are born over time and indexed by their date of birth. 
I The system starts with m nodes all connected to each other. 
I When born, each new node forms m undirected links with 
pre-existing nodes. 

However, instead of linking randomly, the new node links to 
pre-existing nodes with probability proportional to their 
degrees. 
I Thus, the probability that existing node i gets a link from a 
new node at time t equals 

di (t) m 
m (instead of in uniform model). 

∑t 
=1 dj (t) tj 

This will make a big difference: fraction of nodes with degree � d 
�−2

greater than d equals , which for large d is much greater m 
18

− d −m
than the corresponding fraction of e m in the uniform model. 



This equation has solution

di (t) = m
�
t
i

�1/2

.

Evolution of Expected Degrees 
We proceed much like in the uniform attachment model. 

Starting time at t = m + 1, there are tm total links in the system 
at time t. 
Hence, the probability that node i gets a new link at time t equals 
di (t) di (t)m = .2tm 2t 

This implies that the evolution of expected degrees is given by 
(under mean-field approximation) 

d di (t)di (t) = ,
dt 2t 

with initial condition dt (t) = m. 
I Rate of forming new links falls with di (t) /t, which is slower 
than 1/t rate under uniform attachment. 
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Evolution of Expected Degrees 
We proceed much like in the uniform attachment model. 

Starting time at t = m + 1, there are tm total links in the system 
at time t. 
Hence, the probability that node i gets a new link at time t equals 
di (t) di (t)m = 2tm 2t . 

This implies that the evolution of expected degrees is given by 
(under mean-field approximation) 

d di (t)di (t) = ,
dt 2t 

with initial condition dt (t) = m. 
I Rate of forming new links falls with di (t) /t, which is slower 
than 1/t rate under uniform attachment. 

This equation has solution � �1/2t
di (t) = m .

i 
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Comparison with Uniform Attachment 
With preferential attachment, � �1/2t

di (t) = m .
i 

With uniform attachment, 

t
di (t) = m + m log .

i 

In both cases, older nodes have higher expected degrees, but 
expected degree increases with age much faster under preferential √ 
attachment than under uniform attachment ( t vs. log t). 

I Hence, at any point in time, the distribution of expected 
degrees will be much more dispersed under preferential 
attachment. 
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Distribution of Expected Degrees 
As in uniform attachment model, nodes’expected degrees are 
increasing over time. 
I To find fraction of nodes with expected degrees below d at 
time t, suffi ces to identify which node i (d) has expected 
degree exactly d at time t. 

This is given by � �1/2 � �2t i (d) m
d = m ⇐⇒ = ,

i (d) t d 

for d < (mt)1/2 (the maximum expected degree at time t). 

1/2Hence, for d < (mt) , the fraction of nodes with degree greater 
than d is � �2m

1 − Ft (d) = .
d 

The corresponding density function is 
2d−3Pt (d) = 2m . 
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Distribution of Expected Degrees (cntd.) 
We have shown that, under preferential attachment, the fraction of 
nodes with degree greater than d at time t equals 

2d−3Pt (d) = 2m . 

I Again, for d < dmax , the fraction of nodes with degree greater 
than d does not depend on t. 

I This expected degree distribution is a power law with 
exponent -3. 

I Remarkably similar to distribution of web links. 
I Very different from exponential distribution resulting form 
uniform attachment model. 

I As in the uniform attachment model, it can be verified that, 
as t → ∞, Pt (d) is in fact the distribution of realized 
degrees. Again, proof is beyond our scope. 

I Preferential attachment thus provides an explanation for 
power-law degree distributions. 
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Pareto vs. Log-Normal 
Another “heavy-tailed”distribution is the log-normal distribution: 

Xthis is the distribution of e where X is a normal random variable. 
I “Heavy-tailed” means tails falls off slower than exponential. 
“Fat-tailed” means tails are approximated by a power function 
x−α . So fat-tailed implies heavy-tailed, but not vice versa. 
The Pareto distribution is fat-tailed (and hence heavy-tailed); 
the log-normal distribution is heavy-tailed but not fat-tailed. 

By the central limit theorem, the geometric (multiplicative) mean 
of n iid random variables Xi converges to a log-normal distribution. 
I Thus, in a population (e.g., of cities, fortunes, or genomes) if 
growth rate is random and independent of current size, the 
cross-sectional distribution converges to a log-normal 
distribution. 

I This is called the law of proportionate effect or Gibrat’s 
law, after Robert Gibrat who observed in the 1930s that firm 
sizes (# employees) followed an approximately log-normal 
distribution and proposed random growth rates. 
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Zipf vs. Gibrat 
There is some debate over whether things like city population or 
firm size are better approximated by a Pareto distribution (Zipf’s 
law) or a log-normal distribution (Gibrat’s law). 

From our analysis today, one important factor determining which is 
more likely is whether there is a fixed number of growing cities or a 
growing number of growing cities. 

I Fixed number of growing cities with iid growth rates =⇒ 
log-normal distribution. 

I Growing number of growing cities with iid growth rates =⇒ 
Pareto distribution. 

I This type of process is also called a Kesten process, after 
mathematician Harry Kesten (1973). 

At least for cities, the bulk of the distribution is very close to 
log-normal, but the upper tail may be closer to Pareto. 

I The jury is still out. 
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Zipf vs. Gibrat 
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Summary 

I Dynamic network formation models add realism by modeling 
how networks form over time. 

I If new nodes form links uniformly at random, process 
generates thin-tailed, ER-like networks. 

I If new nodes link to existing nodes in proportion to their 
degrees, process generates networks with power-law degree 
distributions. 

I Dynamic network formation with prefential attachment is one 
explanation of power-law degree distributions, as observed 
among web pages, citation networks, and friendship networks. 

I A related type of distribution is a log-normal distribution, 
which arises from a fixed population of “units” with random 
growth rates. There is a debate about whether some 
important empirical distributions are better described as 
Pareto or log-normal. 
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