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DeGroot Learning Model: Preview 

The DeGroot learning model (introduced in 1974 by statistician 
Morris DeGroot) is a simple, important model of how people in a 
network update their opinions over time and eventually reach a 
group consensus 

Basic idea: each period, every agent in the network updates her 
opinion by taking a weighted average of her own opinion and her 
neighbors’opinions, with constant, time-invariant weights. 

Given all the agents’initial opinions and the matrix describing 
what (constant) weight each agent puts on each other agent’s 
opinion, we will be able to compute the dynamics of everyone’s 
opinions and the long-run group consensus belief. 

Among other interesting results, we’ll see that an agent’s 
influence on the group’s long-run consensus belief is determined 
by her eigenvector centrality in the weight matrix. 
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Does Repeated Averaging Make Sense? 
Before getting into the math, let’s step back and ask what such a 
model of repeated averaging can and cannot capture. 

First of all, understanding social learning– how groups of people 
aggregate their information and form beliefs and preferences– is a 
key question in social science, with countless applications. 

I Which candidate becomes popular and wins an election? 
I What are the prices for shares in various companies on the 
stock market? 

I Which restaurants, books, or movies become popular? 

Good models of social learning can guide empirical analysis, 
decisions, and policy on these topics. So the general problem is 
quite important. We will spend substantial time in this course on 
understanding social learning and information aggregation. 3



Does Repeated Averaging Make Sense? (cntd.) 
There are two broad approaches to modeling social learning. 

Bayesian social learning: Agents are Bayesian statisticians. 
Agents are trying to learn some unknown state of the world (e.g., a 
company’s long-run profitability), they start with a prior belief, and 
they update it using Bayes’rule in light of information they receive 
from the environment or from other agents. 

I These models are in some sense the “gold standard” for 
understanding rational learning. However, they assume a lot 
of rationality on the part of agents and they can be very 
complicated outside of simple examples. 

I Great models of how people should learn, whether they’re 
great models of how people do learn is more nuanced. 

I We will study these models (and assess their strengths and 
weaknesses) later in the course after we introduce Bayesian 
game theory. 4



Does Repeated Averaging Make Sense? (cntd.) 

Non-Bayesian/“rule of thumb” learning: Agents do something 
simpler, more “heuristic” than Bayesian learning. 

You can perhaps think of these models as 

I a rough-and-ready approximation of Bayesian learning when 
that’s too complicated, or 

I a more accurate model for real people who aren’t so rational, 
or 

I a description of updating something that isn’t quite a “belief” 
in the proper probabilistic sense (e.g., how people update their 
“opinion” on an issue, or their tastes for one product or 
another). 

These various interpretations may make more or less sense in 
different contexts. 5



Does Repeated Averaging Make Sense? (cntd.) 

The DeGroot learning model is the simplest and best-known model 
of non-Bayesian social learning in a network. 

I The DeGroot repeated averaging procedure is typically not 
well-founded in terms of rational social learning. 
(The agents in the model aren’t “good Bayesians.”) 

I Nonetheless, the model is still useful and important for the 
above reasons. 

I It is also useful as a complement to the Bayesian models we’ll 
see later in the course, which arguably have stronger 
foundations but are often less tractable. 
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DeGroot Model 

I Finite set of agents N = {1, . . . , n} . 
I Discrete time: t = 0, 1, 2, . . . 
I Interactions capture by an n × n non-negative updating 
matrix A. 

I Aij ≥ 0 indicates the level of weight or trust that i puts on j 
I A is a row-stochastic matrix: ∑n 

=1 Aij = 1 for all i .j 

I Each agent i has initial belief (or “opinion”; not a belief in 
the Bayesian sense) xi (0) ∈ [0, 1]. 

I From period t to t + 1, agent i updates her belief by linear 
averaging according to A: 

n 

xi (t + 1) = ∑ Aij xj (t) . 
j =1 
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Opinion Dynamics 
How does the vector of beliefs x (t) evolve over time? 

We have 
n 

xi (t) = ∑ Aij xj (t − 1) for all i ∈ N and t > 0. 
j =1 

In matrix notation, this says 

x (t) = Ax (t − 1) . 

Iterating, we obtain 
x (t) = Atx (0) . 

Thus, belief vector x (t) evolves as a Markov chain with transition 
matrix A. 
I This is the same as the “viruses” we used to interpret 
eigenvector centrality in Lecture 3, with the difference that 
here we take the dynamics literally. Also, because A is 
row-stochastic the mass of viruses at each node always stays 
between 0 and 1. 
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Example 

Suppose n = 3 and the updating matrix is given by ⎛ ⎞ 
1/3 1/3 1/3 

A = ⎝ 1/2 1/2 0 ⎠ . 
0 1/4 3/4 

I Agent 1 puts equal weight on everyone’s opinion. 
I Agent 2 puts 1/2 weight each on her own opinion and agent 
1’s opinion. 

I Agent 3 puts 3/4 weight on her own opinion and puts 1/4 
weight on agent 1’s opinion. 
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Example (cntd.) 
Suppose the vector of initial opinions is ⎛ ⎞ 

1 
x (0) = ⎝ 0 ⎠ . 

0 

I Agent 1 starts with opinion 1; agents 2 and 3 start with 
opinion 0. 

After 1 period of updating, beliefs are given by 

x (1) = Ax (0)⎛ ⎞⎛ ⎞ 
1/3 1/3 1/3 1 

= ⎝ 1/2 1/2 0 ⎠⎝ 0 ⎠ 

0 1/4 3/4 0 ⎛ ⎞ 
1/3 

= ⎝ 1/2 ⎠ . 
0 
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Example (cntd.) 

After 2 periods of updating, beliefs are given by 

x (2) = Ax (1) = A2x (0)⎛ ⎞⎛ ⎞ 
1/3 1/3 1/3 1/3 

= ⎝ 1/2 1/2 0 ⎠⎝ 1/2 ⎠ 

0 1/4 3/4 0 ⎛ ⎞ 
5/18 

= ⎝ 5/12 ⎠ . 
1/8 
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Example (cntd.) 
To calculate the belief dynamics, we keep left-multiplying by the 
matrix A. 

In the long-run, beliefs converge to 

∗ x = lim Atx (0)
t→∞⎛ ⎞ 
3/11 

= ⎝ 3/11 ⎠ . 
3/11 

I We’ll see how this is computed later in the lecture. 

Two things to note: 

1. Everyone’s belief converged (no cycling). 

2. Everyone’s belief converged to the same thing (the group 
reached consensus). 
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Do Beliefs Always Converge in the Long Run? 

In the example, the belief vector x (t) converged in the long-run 
(no cycling), and the limiting belief vector was constant 
(consensus). 

This happens for “typical” updating matrices A, but not for all of 
them. 
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An Example with Cycles 

Suppose the updating matrix is ⎛ ⎞ 
0 1/2 1/2 ⎝ ⎠A = 1 0 0 . 
1 0 0 

I Agent 1 puts equal weight on the other agents’opinions and 0 
weight on her own opinion; the other agents put all weight on 
agent 1. 

Suppose the vector of initial opinions is ⎛ ⎞ 
1 

x (0) = ⎝ 0 ⎠ . 
0 
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Example with Cycles (cntd.) 

Then ⎛ ⎞⎛ ⎞ ⎛ ⎞ 
0 1/2 1/2 1 0 

x (1) = ⎝ 1 0 0 ⎠⎝ 0 ⎠ = ⎝ 1 ⎠ . 
1 0 0 0 1 

And ⎛ ⎞⎛ ⎞ ⎛ ⎞ 
0 1/2 1/2 0 1 

x (2) = ⎝ 1 0 0 ⎠⎝ 1 ⎠ = ⎝ 0 ⎠ . 
1 0 0 1 0 

But this brings us back to x (0). Hence, x (t) will alternate 
between x (0) and x (1) forever– beliefs will not converge. 
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Aperiodic Matrices 

Mathematically, the problem here is that powers of the matrix A 
cycle: that is, A is periodic. ⎛ ⎞ 

0 1/2 1/2 ⎝ ⎠A = 1 0 0 
1 0 0 ⎛ ⎞ 
1 0 0 

A2 = ⎝ 0 1/2 1/2 ⎠ 

0 1/2 1/2 ⎛ ⎞ 
0 1/2 1/2 

A3 = ⎝ 1 0 0 ⎠ = A. 
1 0 0 
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Aperiodic Matrices (cntd.) 
In general, a matrix is aperiodic if the greatest common divisor of 
all directed cycle lengths is 1 (where “directed cycles” are defined 
in the network where there is a directed link from i to j iff Aij > 0). 

I The condition holds in the first example above, but not in the 
second example as in that case the length of all directed 
cycles are even. 

A simple suffi cient condition for a matrix to be aperiodic is that 
there exists some agent i such that Aii > 0. 

I That is, if anyone puts positive weight on her own opinion 
then the matrix is aperiodic. 

Important (and intuitive) fact from Markov chain theory: if the 
matrix A is aperiodic, then limt→∞ At converges. 

I Another consequence of the Perron-Frobenius theorem we 
encountered in Lecture 3. 
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Strongly Connected Matrices 
Even if limt→∞ At converges, agents can have different long-run 
beliefs if the matrix is not strongly connected (i.e., for some i and 
j , there is no directed path from i to j). 

Trivial example: � � 
1 0

A = .
0 1 

I Each agent sticks with her initial belief forever, so if 
x1 (0) 6= x2 (0) there is no long-run consensus. 

However, if the matrix is strongly connected, then if beliefs do 
converge, they must converge to a vector where everyone has the 
same belief. 
I Otherwise, every agent with the lowest limit belief puts weight 
only on agents with weakly higher limit beliefs, and some 
agent with the lowest limit belief puts strictly positive weight 
on some agent with a strictly higher limit belief, which is 
impossible. 
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Long-Run Consensus 
Putting together what we’ve said about aperiodic and strongly 
connected matrices, we have: 

Theorem 
Consider the directed network defined by A, where there is a link 
from i to j iff Aij > 0. If this network is strongly connected and 
aperiodic, then limt→∞ At = A∗ exists. Moreover, the rows of the 
matrix A∗ are all the same: for every vector of initial beliefs x, we 
have (A∗ x)i = (A

∗ x)j for all agents i and j . 

Note: the long-run updating matrix A∗ is determined by the 1-shot 
updating matrix A, independent of the initial beliefs. 

I This implies that each agent gets the same weight in forming 
the long-run consensus, regardless of the initial beliefs. 

I Since the long-run consensus is given by A∗ x , agent i’s weight 
is the i th element of (any one of the) rows of the matrix A∗ . 

I We now show how to compute each agent’s weight. 
This also lets us compute the long-run beliefs A∗ x . 

19



Long-Run Influence 

Agent i’s weight in determining the long-run consensus is called 
her long-run influence si . 

Formally, say that a column vector s ∈ [0, 1]n is a long-run 
influence vector if ∑i si = 1 and 

n 

x ∗ 0 = s · x (0) = 1 
=1 
∑ 
i 
si xi (0) 

for every vector of initial beliefs x (0). 
∗ ∗I (Since xi is the same for all i , could have written xi for any i 

∗instead of x1 .) 
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Long-Run Influence (cntd.) 

If s is a long-run influence vector, then we have 

0 0 0s · x (1) = s · (Ax (0)) = s · x (0) 

∗(as both equal x1 ). 

Since this must hold for every vector x (0), we have 

0s 0A = s , or equivalently A0s = s. 

That is, s is a (actually, the) unit eigenvector of A0 . 

This is precisely the vector of eigenvector centralities of A0 (as 
defined in Lecture 2). 

I Punchline: in DeGroot learning, an agent’s long-run influence 
equals her eigenvector centrality. 
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Computing Long-Run Influence and Beliefs 

We now have a recipe for computing long-run influence and beliefs. 

1. First compute the long-run influence vector s 
(i.e., the unit eigenvector of the updating matrix A0). 

02. Then compute the long-run belief as s · x (0). 

Note: to compute the long-run beliefs given updating matrix A 
and initial beliefs x (0), we start by ignoring the initial beliefs and 
instead computing the influence vector s (which doesn’t depend on 
initial beliefs), and then calculate the long-beliefs as an average of 
the initial beliefs with weights given by s. 

Let’s see how this works in an example. 
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Example 

Recall our first example: ⎛ ⎞ 
1/3 1/3 1/3 

A = ⎝ 1/2 1/2 0 ⎠ . 
0 1/4 3/4 

The long-run influence vector s is given by the system of equations: 

1 1 
s1 = s1 + s23 2 

1 1 1 
s2 = s1 + s2 + s33 2 4 

1 3 
s3 = s1 + s3.3 4 
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Example (cntd.) 
Solving this system of equations gives 

3 
s1 = 

11 
4 

s2 = 
11 
4 

s3 = .
11

For example, if the vector of initial beliefs is given by ⎛ ⎞ 
1 

x (0) = ⎝ 0 ⎠ , 
0 

then the long-run consensus is given by 

∗ 0 3 
x = s · x (0) = .

11 
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Wisdom of the Crowd 
Another question: with DeGroot learning, when are large networks 
“wise”? 

I Suppose each initial opinion xi (0) is an independent, unbiased 
estimate of some true state of the world θ. 

I When does the consensus long-run belief converges in 
probability to θ as the network grows large? 

I Recall that the long-run consensus equals ∑n 
=1 si xi (0).i 

I By the law of large numbers, this sum converges in probability 
to θ if and only if 

lim max si (n) = 0. 
n→∞ i ≤n 

I That is, the network is wise if and only if each node’s long-run 
influence is small. 
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Equal Long-Run Influence 

Under what conditions is each node’s long-run influence small? 

Different conditions can be given. A simple approach is to ask 
1when all nodes have equal long-run influence, in that si = for all n 

i . 

It turns out that all nodes have equal long-run influence if and only 
if the network is doubly stochastic. 
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Stochastic Matrices 

We’ve assumed A is row stochastic matrix: ∑j Aij = 1 for all i . 

I This says xi (t + 1) is a weighted average of the xj (t)’s 
(including xi (t)). 

A matrix A is called doubly stochastic if all rows and columns 
sum to 1: 

∑ Aij = 1 for all i , and ∑ Aij = 1 for all j . 
j i 

I In DeGroot learning, this means that each agent gets the 
same average weight in others’updating rules. 
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Equal Long-Run Influence (cntd.) 

Theorem 
In DeGroot learning, everyone has equal long-run influence if and 
only if the influence matrix A is doubly stochastic. 

We skip the proof. 

Simple example: suppose n = 2, so A is a 2x2 matrix. 

I In this case, “doubly stochastic” simply means that the weight 
1 puts on 2’s opinion equals the weight that 2 puts on 1’s 
opinion. 

1I The theorem says that s1 = s2 = 2 if and only if this 
condition holds, which makes sense. 
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Generalizations of DeGroot 

Since the DeGroot model is so simple, it can be extended in various 
directions to capture other possible aspects of rule-of-thumb social 
learning. We’ll mention just a couple possibilities. 

Time-varying weight on own belief (DeMarzo, Vayanos, and 
Zwiebel, 2000): If agents realize they are learning over time (or 
wish to avoid “double-counting” their neighbors’beliefs), they 
might put more weight on their own belief. A natural model of this 
is 

n 

xi (t) = (1 − λt ) xi (t − 1) + λt ∑ Aij xj (t − 1) , 
j =1 

where λt decreases over time. (λt constant is standard DeGroot.) 
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Generalizations of DeGroot (cntd.) 

Ignoring people with distant beliefs (Krause, 2000): Perhaps only 
people with nearby beliefs are worth listening to. A natural model 
of this is 

∑j ∈Ni :|xi (t−1)−xj (t−1)|<d xj (t − 1) 
xi (t) = . |{j ∈ Ni : |xi (t − 1) − xj (t − 1)| < d}| 

In these models, under some conditions the group can be 
partitioned into sets of agents who form distinct consensuses. See 
Jackson Ch. 8 if curious. 
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Generalizations of DeGroot (cntd.) 
Initially uninformed agents (Banerjee, Breza, Chandrasekhar, and 
Mobius, 2021): Perhaps only a subset of agents S ⊂ N initially 
have any opinion at all, and other agents develop opinions 
(according to the usual weighted averaging) only when at least one 
of their neighbors develops an opinion (or is in the initial “seed 
set” S). 
I Now each agent i ∈ S gets extra influence, as she pushes her 
beliefs onto all agents in N\S who are closer to i than to any 
other agent in S . 

I The set of agents in N\S who are closer to i than to anyone 
else in S is called the Voronoi set of i . 

In this model, the group always eventually reaches a single 
consensus as in standard DeGroot. However, roughly speaking, the 
influence of each node i ∈ S on the consensus is now determined 
by the size of her Voronoi set. This is the number of agents that 
agent i “persuades” before the agents in the network start 
averaging their opinions. 
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Remark: Aggregation vs. Diffusion 

DeGroot learning is a model of opinion aggregation: everyone 
starts with an opinion, we ask how they get aggregated into a 
social consensus. 

In the coming weeks, we will spend considerable time on models of 
diffusion (of information, but also new products, diseases, etc.): 
only a few people start with a piece of information, we ask how it 
spreads through society. 

The Banerjee et al model is a hybrid: “having an opinion” diffuses, 
while people who already have opinions aggregate them a la 
DeGroot. 

It’s useful to understand the difference between aggregation and 
diffusion, while also recognizing that in the real-world social 
learning has elements of both. 32



DeGroot Learning: Summary 

I DeGroot learning is a simple and tractable model of imitative, 
non-Bayesian social learning. 

I If the updating matrix is strongly connected and aperiodic, 
the group reaches consensus in the long-run. 

I The long-run consensus is computed by first computing each 
individual’s long-run influence, which equals her eigenvector 
centrality. 

I Even though DeGroot learning is very simple and somewhat 
naive, it satisfies a kind of “wisdom of the crowds” if each 
node is equally inflential. For example, this is the case if the 
updating matrix is doubly stochastic. 

I The DeGroot model is amendable to various extensions that 
can sometimes be more realistic. However, typically these 
extensions only partially preserve the DeGroot model’s strong 
results on consensus and influence. 
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