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Eigenvector-Based Centrality Measures 
Last week, we introduced several different measures of the 
“centrality” of a node in a network. 

I Degree centrality, closeness centrality, betweeness centrality. 

Another, very important class of centrality measures are based on 
the idea that a node is important if it is connected to other 
important nodes. 

This week’s lectures introduce such eigenvector-based centrality 
measures, along with 3 important applications: 

I How Google ranks webpages (PageRank). 
I Which agents in a social network are influential in forming the 
group’s long-run consensus opinion (DeGroot learning). 

I Which firms in a production network are most systemically 
important (Leontief input-output analysis). 
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Setup 

Recall that we have a network with a set of nodes N = {1, . . . , n} 
and adjacency matrix g = [gij ]i ,j ∈N , where gij = 1 indicates a link 
from i to j , and gij = 0 indicates no such link. 

We want a measure of the importance of a node, whereby a node 
is important if other import nodes link to it. 

I E.g. an important website is one that many other important 
websites link to. 
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Eigenvector Centrality 

The simplest such measure is eigenvector centrality: a non-zero 
vector c = (ci )i ∈N such that, for some scalar λ > 0, we have 

λci = ∑ gji cj for all i ∈ N. 
j 6=i 

That is, the centrality of each node i is proportional to the sum of 
the centrality of its neighbors. 

I Note that in this definition we have gji rather than gij . 
I This doesn’t matter for undirected graphs. For directed 
graphs, it says that a node’s centrality derives from the 
centrality of nodes that point to it. 

I Interpretation: when “important” or “prestigous” nodes point 
to you, this makes you important/prestigious. 

I Equations still hold if we multiply c by a scalar. 
We typically normalize c so that ∑i ∈N ci = 1. 
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Example 
Suppose n = 3 and ⎡ ⎤ 

0 1 1 
g = ⎣ 1 0 1 ⎦ 

0 0 0 

Then eigenvector centrality (with the normalization ∑i ∈N ci = 1) is 
defined as the solution to the system of equations 

λc1 = c2 
λc2 = c1 
λc3 = c1 + c2 

c1 + c2 + c3 = 1. 

Solving this system gives 

1 1
λ = 1, c1 = c2 = , c3 = .
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Eigenvector Centrality (cntd.) 

Eigenvector centrality (ci )i ∈N is defined by 

λci = ∑ gji cj for all i ∈ N, 
j 6=i 

c 6= 0. 

It’s not immediately obvious whether we can find such a vector c : 
that is, whether such a measure exists or is unique. 

I n linear equations with n unknowns, so looks promising. . . 
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When is Eigenvector Centrality Well-Defined? 

For strongly connected networks, it turns out that eigenvector 
centrality is always well-defined. 

I Recall that a directed network is strongly connected if there 
exists a directed path between any two nodes. 

I In particular, every connected undirected network is strongly 
connected. 

I In general, a network is strongly connected if for every pair of � � 
`nodes i , j , there exists a number ` such that g > 0.ij 

I Matrices g with this property are called irreducible. 
I That is, a network is strongly connected if and only if its 
adjacency matrix is irreducible. 
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When is Eigenvector Centrality Well-Defined? (cntd.) 
In matrix form, the equation for the c is 

0λc = g c , 

where λ is a scalar, c is a n × 1 vector, and g 0 is the transpose of 
the n × n adjacency matrix (transposed because we want ∑j =i gji cj6 
on the RHS: for directed graphs, we care about the nodes that link 
to you, not the nodes you link to). 

0I That is, c is an eigenvector of g , with λ the corresponding 
eigenvalue. 

I The Perron-Frobenius theorem of linear algebra says that, for 
every irreducible non-negative matrix, its largest eigenvalue is 
positive, and the components of the corresponding eigenvector 
are also all positive. 

0I So, λc = g c has a positive solution: λ is the largest 
0eigenvalue of g , and c is the corresponding eigenvector. 

I Punchline: for any strongly connected network, the 
eigenvector centrality vector c is well-defined (and positive). 
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Interpretation as Long-Run Population Shares 
Useful interpretation of eigenvector centrality as the long-run 
outcome of a reproduction process (which also explains why it’s 
always well-defined for strongly connected networks): 

I Suppose a “virus” starts at a random node in the graph. 
I In each period, every virus sends one copy of itself along each 
link from the node where it is located. Then it dies. 

I (So there’s 1 virus in period 1, |Ni | viruses in period 2, 
∑j ∈Ni |Nj | viruses in period 3, etc.) 

I Letting this process run forever, the virus never dies out 
(because the network is strongly connected), and we can 
calculate the long-run fraction of viruses located at each node. 

I The long-run fraction of viruses located at node i equals ci . 

(Why? Because the long-run fraction of viruses located at node i 
is proportional to the long-run fraction of viruses located at nodes 
that link to node i . This is the relationship that defines eigenvector 
centrality.) 
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A Caveat about this Interpretation 
Since the network is strongly connected, the virus never dies out. 

But, does the fraction of viruses located at each node have to 
converge, or can it perhaps cycle forever? 

If we assume only that A is irreducible, the fraction of viruses at 
each node could cycle forver.� � 

0 1I E.g. the matrix is irreducible, but the fraction of 
1 0 

viruses at node 1 bounces back and forth between 0 and 1. 

This is just a glitch in the virus interpetation, not in the definition 
of eigenvector centrality or the subsequent analysis. 

I We’ll return to this issue in Lecture 5, when we’ll also see a 
simple additional condition on A that guarantees convergence 
rather than cycling. 
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Perron-Frobenius Theorem 

Theorem 
For every irreducible non-negative matrix A, its largest eigenvalue 
λ1 is a positive real number, and the components of the 
corresponding eigenvector v1 are also all positive. 

The theorem says more than this, but this is what we need. 

The proof is outside our scope, but we can give an informative 
informal argument. 
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Intuition for the Perron-Frobenius Theorem 
I Fix any non-negative vector x (0) ∈ Rn . Suppose that we can 
write it as a linear combination of the eigenvectors vi of A: 

x (0) = ∑ αi vi . 
i 

I Consider repeatedly multipying x (0) by A. 
(Matrix multiplication = copying viruses. . . ) 
After t steps, we get the vector � �tλi x (t) = Atx (0) = At ∑ αi vi = ∑ αi λti vi = λt αi vi .1 ∑ λ1i i i � �t

λiI Since λ1 is the largest eigenvalue, → 0 as t → ∞, for λ1 

all i 6= 1. Therefore, x (t) /λt 1 → α1v1. That is, the limiting 
vector x (∞) is proportional to the largest eigenvector. 

I Since x (0) was non-negative and A is non-negative, each x (t) 
is also non-negative. Therefore, λ1 must be positive (else 
oscillates), and every component of v1 must also be positive. 
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Other Insights from this Argument 

Just like with the viruses, the limiting vector x (∞) is proportional 
to the largest eigenvector. 

Normalizing this eigenvector so its components sum to 1 gives 
eigenvector centrality. 

Aside: We might also ask how fast x (t) converges to x (∞). � �t
λ2I This is determined by how fast goes to 0 as t → ∞ � �t λ1 

λi(since goes to 0 faster than this for all i ≥ 3).λ1 

I Bigger gap between first and second eigenvalue =⇒ faster 
convergence. 

I We won’t study this question, but FYI this explains why the 
second eigenvalue often plays a role in analysis of networks / 
Markov chains. 13



Problems with Eigenvector Centrality in Directed Networks 

Eigenvector centrality is well-defined for strongly connected 
directed networks, but for directed networks that are not strongly 
connected the only solution c to the required equations equals 0 
for a large number of nodes (or even all of them). 

I E.g. if the network is a directed line, eventually the virus 
reaches the end of the line, and then it dies without making 
any copies. 

Many important directed networks are not strongly connected. 

I Example: the Web. A large fraction of webpages are 
contained in a large strongly connected component of the 
Web, but many other webpages lie “upstream” or 
“downstream” of this strongly connected component (i.e., in 
its in-component or out-component). 14



Problems in Directed Networks (cntd.) 
If a directed network is not strongly connected, only nodes that lie 
either in a strongly connected component or its out-component 
can have positive eigenvector centrality. 

I All other nodes have only out-links, or have in-links only from 
nodes that have only out-links, or have in-links only from 
nodes that have in-links from nodes that have only out-links, 
etc.. 

I Such nodes have 0 eigenvector centrality. Why? 
(Think of the viruses.) 

This can be a big problem with using eigenvector centrality to 
assign importance in directed networks. 

I If Google used eigenvector centrality to determine webpages’ 
importance/rank, a large fraction of webpages would have zero 
importance and thus would never appear on its search results! 

I This problem motivates introducing our next measure (which 
also has many other uses). . . 
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Katz-Bonacich Centrality 
A way to “fix” eigenvector centrality to make it more useful for 
directed networks is to first give each node a certain amount of 
centrality β “for free”. 

We thus seek a non-negative vector c and scalar λ such that 

1 
ci = 

λ ∑ gji cj + β for all i ∈ N, 
j 6=i 

or in matrix form 
1 0c = g c + β.
λ 

Solving this equation for c gives � �−11 0c = β I − g 1,
λ 

where I is the n × n identity matrix and 1 is the n × 1 vector of 
1’s. This is called the vector of Katz-Bonacich centralities with 
parameter 1/λ. 
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Katz-Bonacich Centrality (cntd.) 

If we write α for 1/λ, Katz-Bonacich centrality with parameter α is 
defined by � 0�−1 c = β I − αg 1, 

Note: 

1. The choice of β just scales the vector c . For this reason, we 
typically take β = 1 when discussing Katz-Bonacich centrality. 
However, note that this is a different normalization than 
taking ∑i ci = 1! 

2. On the other hand, different choices for α yield different 
vectors c , which is why properly we speak of Katz-Bonacich 
centrality with parameter α. 
When discussing Katz-Bonacich centrality, the parameter α is 
typically called the decay parameter. 17



Katz-Bonacich Centrality and the Leontief Inverse 
An (important) aside: What’s the meaning of the matrix 
(I − αg 0)−1 in the formula for Katz-Bonacich centrality? 

For any matrix A, the matrix Λ = (I − αA)−1 is called the 
Leontief inverse of A with parameter α. 
I Thus, with the standard normalization β = 1, Katz-Bonacich 
centrality is defined as Λ1, where Λ is the Leontief inverse of 
g 0 . 

To understand the Leontief inverse, note that we can write 
−1(I − αA) = I + αA + α2A2 + . . . . 

k(Why? It’s much like a geometric series. Let Sn = ∑n 
=0 (αA) .k 

Then we have 
n n 

k k +1(I − αA) Sn = ∑ (αA) − ∑ (αA) = I − (αA)n+1 →n→∞ I . 
k =0 k =0 18

−1Pre-multiply both sides by (I − αA) to get S∞ = (I − αA)−1.) 



Leontief Inverse (cntd.) 
We have 

−1Λ = (I − αA) = I + αA + α2A2 + . . . . 

So, for any i 6= j , 
n 

Λij = αaij + α2 ∑ aik akj + . . . . 
k =1 

That is, Λij is the sum over all lengths ` of the value of all length-` 
walks from i to j , where the value of a walk is the product of the 
weights on the links, and length-` walks are “discounted” by α` . 
I Longer walks get less weight. The decay parameter says how 
much less. 

Intuitively, if aij is the “direct influence” of i on j , then Λij is the 
“sum of the direct and indirect influence” of i on j , where 
“indirect influence” is via all arbitrarily long walks, with longer 
walks discounted according to the decay parameter. 
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Leontief Inverse (cntd.) 

The idea that the Leontief inverse Λ captures the sum of direct 
and indirect influences is a little subtle at first, but it’s the key to 
understanding what Katz-Bonacich centrality and similar measures 
are and why they’re useful. 

We’ll an application of Katz-Bonacich centrality next class, but for 
now move on (finally!) to describing PageRank. 
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From Katz-Bonacich Centrality to PageRank 

Katz-Bonacich centrality is similar to PageRank, the score that 
Google assigns to webpages to determine its search ranking. 

I Brin and Page’s key insight that allowed Google to take over 
the market in the early days of websearch: rather than 
appealing to some external authority to rank webpages, assign 
“importance” to webpages that are linked to by other 
“important” webpages. 

However, if Google had simply used Katz-Bonacich centrality, they 
would have had a big problem: any webpage that is linked to by an 
important webpage would be assigned high importance. 

I E.g. every obscure internet seller that sells on Amazon would 
be highly ranked. 
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PageRank (cntd.) 

To avoid this, PageRank modifies Katz-Bonacich centrality by 
normalizing the adjacency matrix by nodes’out-degrees. 

The vector of PageRank scores c (with parameter α) is given by 

gji ci = α ∑ cj + 1 for all i ∈ N,
dout j 6=i j 

where by convention dj
out is set to 1 if node j has out-degree 0. 

In matrix form, this gives 

0D−1c = αg c + 1, 

where D is the diagonal matrix with entries Dii = max {dout , 1}.i 
22



PageRank (cntd.) 
Solving this matrix equation gives � �−10D−1c = I − αg 1. 

This is the vector of PageRanks with parameter α. 

Note that α is a free parameter that can be used to tune the 
algorithm. � �−10D−1Because we understand what the Leontief inverse I − αg 
means, we can understand the tradeoff that Google faces in tuning 
the parameter α. 

I α is the decay parameter in the Leontief inverse. 
I The higher is α, the more weight PageRank puts on indirect 
links rather than direct links. 

I In practice, Google sets α = 0.85. 

Let’s see another way of looking at this. . . 
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Interpretation as Long-Run Frequencies 
An interpretation of PageRank (similar but not the same as 
“viruses”): 

I Suppose a “web surfer” starts at a random node in the graph. 
I Each period, with probability α the surfer follows a random 
link from the node where she is currently located, and with 
probability 1 − α she jumps to a random node in the graph. 

I Letting this process run forever, we can calculate the long-run 
fraction of periods in which the surfer is located at each node. 

I The long-run fraction of periods in which the surfer is located 
at node i equals ci (1 − α) /n (=PageRank, normalized so the 
PageRanks of all nodes sum to 1). 

Note: Like the “virus” interpretation of eigenvector centrality, but 
without reproduction (=normalizing by out-degree) and with 
jumps (=“free” centrality). Also, the jumps rule out cycling, so 
now the process always converges. 
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Tuning the Free Parameter 

This interpretation helps us understand how Google chooses a 
value for the free parameter α. 

I Choosing α close to 1 introduces less noise (that is, puts more 
weight on the “eigenvector” term in the equation for c). The 
downside is that, as α → 1, PageRank converges to 0 for 
nodes that are upstream of all strongly connected components 
(just like eigenvector centrality). 

I Choosing α close to 0 introduces more noise (that is, puts 
more weight on the constant term in the equation for c). The 
downside is that, as α → 0, PageRank converges to the vector 
of 1’s, and thus loses all information about the network. 

Google sets α = 0.85. 

So, PageRank=long-run frequency of a web surfer who follows 
links with probability .85 and randomly jumps with probability .15. 

25



Computation 

Finally, the web surfer interpretation also indicates how PageRank 
can be computed iteratively. 

I At t = 0, initialize ci (0) = 1/n for each node i . 
I For each t, given (ci (t))i ∈N , compute (ci (t + 1))i ∈N by 

1 − α gji ci (t + 1) = + α ∑ cj (t) .dout n j 6=i j 

I Iterate until |ci (t + 1) − ci (t)| < ε for all i ∈ N, for some 
small ε > 0. 

This is very similar to using power iteration to find the largest 
eigenvalue/eigenvector of the adjacency matrix. 
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Summary of Eigenvector Centrality-Type Measures 
We have introduced three related (but different!) measures: 

0(For each measure, take g or g depending on whether care about 
0in-links or out-links. Here we write them with g , as in PageRank.) 

1 01. Eigenvector centrality: c = λ g c. 

2. Katz-Bonacich centrality: c = (I − αg 0)−1 1.� �0D−13. PageRank: c = I − αg 1. 

Warning: Jackson Ch. 2 uses slightly different terminology. He 
discusses two different measures from the same original paper by 
Katz. The first measure (PK ) is given by c = g 0D−1c . This is 
eigenvector centrality but with dividing by out-degree, or 
equivalently PageRank without the “free centrality”/constant 
term. The second measure (PK 2), as well as Jackson’s version of 
Bonacich centrality, both correspond to what we call 
Katz-Bonacich centrality, but with the possibility of different initial 
weights on the nodes. 
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Summary (cntd.) 

Our three measures together with PK (“Katz’s first measure”) can 
be categorized according to whether we divide by out-degree 
and/or add a constant term (“free centrality”): 

With constant term� � Without constant term 
Divide by 
out-degree 

0D−1c = I − αg 1 
PageRank 

0D−1c = g c 
Katz’s first measure 

No division 
−1 1c = (I − αg 0)

Katz-Bonacich centrality 

1 0c = λ g c 
Eigenvector centrality 
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Applications of the Measures 

PageRank was developed with a particular application in mind: 
websearch. 

Eigenvector centrality and Katz-Bonacich centrality are not as 
closely associated with one particular application. But they do 
have important applications. The next two lectures cover two 
important network models, which are closely related to eigenvector 
centrality and Katz-Bonacich centrality. 

1. Leontief input-output analysis (closely related to 
Katz-Bonacich centrality but with some economics on top, 
actually came before their papers). 

2. The DeGroot learning model (closely related to eigenvector 
centrality but with some dynamics on top). 
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