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Plan 

First part of the course focuses on the physical structure of 
networks, with no or very simple models of behavior. 

Basic tool: graph theory, the mathematical study of 
graphs/networks. 

I We use the terms “graph” and “network” interchangeably. 

This lecture: Basic graph theory language and concepts for 
describing and measuring networks. 

I Next week: more advanced concepts and applications. E.g., 
Google’s PageRank algorithm, which ranks webpages by 
“importance” based on their position in the Web network. 
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Types of Networks in the Real World 

A network is a set of units (nodes or vertices) connected by 
relationships (links or edges). 

Types of networks: 

I Social and economic networks: nodes are people or groups of 
people. 

I Friendship networks, business relationships between firms, 
intermarriages between families, employment relations in the 
labor market 

I Information networks: nodes are “information objects” 

I Web links, citation network between academic articles, 
semantic/classification networks (e.g., taxonomies) 

I . . . 
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Types of Networks in the Real World (cntd.) 

I Technological networks 
I Infrastructure networks like internet, power grid, transportation 
networks 

I Temporary networks like sensor networks, autonomous vehicles 

I Biological networks 
I Food web, protein interaction network, neural network, 
network of metabolic pathways 

4



New analytical approach:
I Find statistical properties or measures that characterize
network structure.

I Analyze statistical or behavioral models of networks.

History of Study of Graphs/Networks 
Historical study of networks: 
I Mathematical graph theory: central part of discrete math 

I Started with Euler’s 1735 solution to the Königsberg bridge 
problem. 

I Social network analysis in sociology. 
I Typical studies involved circulation of questionnaires, leading 
to relatively small networks; also little focus on individual 
behavior. 

Recent years witnessed a substantial change in network research. 
I From analysis of single small graphs (<100 nodes) to 
statistical properties of large-scale networks (millions/billions 
of nodes). 

I Motivated by availability of computers and computer data. 
I On a different front, integration of game theory and 
graph/social network theory. 

I Later in the course. 
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Graphs 
An graph consists of a set of nodes N = {1, . . . , n} and an n × n 
matrix g = [gij ]i ,j ∈N called the adjacency matrix, where 
gij ∈ {0, 1} denotes the absence/presence of an edge from node i 
to node j . 

I In a weighted graph, the edge weight gij > 0 can take on 
non-binary values, representing the intensity of the interaction. 

In an undirected graph, gij = gji for all i , j ∈ N (g is symmetric). 

I E.g. Facebook friends 

In a directed graph (digraph), gij and gji may differ. 

I E.g. web links 

Examples: draw the graphs corresponding to adjacency matrices: ⎡ ⎤ ⎡ ⎤ 
0 1 0 0 1 1 

I Example 1: ⎣ 0 0 1 ⎦ Example 2: ⎣ 1 0 1 ⎦ 6

1 0 0 1 1 0 



Graphs 

Equivalently, can represent a graph by (N, E ), where E ⊆ N × N 
is the set of edges. 

I For directed graphs, E is the set of “directed” edges, write 
(i , j) ∈ E . 

I For undirected graphs, E is the set of “undirected” edges, 
write {i , j} ∈ E . 

Example 1: Ed = {(1, 2) , (2, 3) , (3, 1)} 
Example 2: could write as either Eu = {{1, 2} , {1, 3} , {2, 3}} 
or Ed = {(1, 2) , (2, 1) , (2, 3) , (3, 2) , (3, 1) , (1, 3)} 

We sometimes denote gij = 1 with the notation (i , j) ∈ g , or 
{i , j} ∈ g , or even ij ∈ g . 
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Walks, Paths, and Cycles 
For an undirected graph (N, E ): 

I A walk is a sequence of edges {i1, i2} , {i2, i3} , . . . , {iK −1, iK }. 
I A path between nodes i and j is a sequence of edges 
{i1, i2} , {i2, i3} , . . . , {iK −1, iK } such that i1 = i and iK = j , 
and each node in the sequence i1, . . . , iK is distinct. 
(i.e. a walk with no repeated nodes) 

I A cycle is a path where the final node equals the initial node. 
I A geodesic between nodes i and j is a “shortest path” (i.e. 
with minimum number of edges) between these nodes. 

The length of a walk (or path) is the number of edges in the walk 
(or path). 

I The distance between nodes i and j is the length of a 
geodesic between them (or ∞ if no such path exists). 
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For directed graphs, the same definitions hold with directed edges 
(in which case we say “a path from node i to node j”). 



Powers of the Adjacency Matrix 
The powers of the adjacency matrix contain useful information 
about walks and paths. 

Under the convention gii = 0, the matrix g2 tells us the number 
of walks of length 2 between any two nodes: 

(g × g )ij = ∑ gik gkj 
k ∈N 

= # {k : {i , k} , {k, j} is a walk between i and j} 
(since gik gkj = 1 if {i , k} , {k, j} is such a walk, = 0 otherwise). 

Similarly, the matrix g3 tells us the number of walks of length 3 
between any two nodes: � 2 � � 2� 

g × g = gij ∑ ik2 
gk2 j 

k2 ∈N� � 
(k1, k2 ) : {i , k1 } , {k1, k2 } , {k2, j}= # .

is a walk between i and j 
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Powers of the Adjacency Matrix (cntd.) 

By induction, gk tells us the number of walks of length k between 
any two nodes. 

This also gives a useful way to express the distance between nodes � � 
i and j : it is the smallest integer k such that gk 6= 0.ij 

A similar interpretation works for weighted graphs: given a� � 
weighted adjacency matrix g , gk is the sum of the “values” of ij 
all length-k walks from i to j , where the value of a walk is the 
product of the weights on each link. 

You’ll see more ways of using the adjacency matrix on the pset. 
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Connectivity and Components 
An undirected graph is connected if for every two nodes there 
exists a path between them. 

A graph (N 0 , E 0) is a subgraph of (N, E ) if N 0 ⊂ N, E 0 ⊂ E , and 
{i , j} ∈ E 0 implies i , j ∈ N 0 . (Each link must have ends.) 

A component of a graph is a maximal connected subgraph. 

I That is, a connected subgraph that is not contained in any 
larger connected subgraph. 

An edge {i , j} is a bridge if deleting it increases the number of 
components. 

Note: the adjacency matrix of a graph with more than one 
component can be written in block-diagonal form: that is, the 1’s 
are confined to square blocks along the diagonal, with all other 
elements equal to 0. (Convince yourself.) 
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Connectivity and Components in Directed Graphs 

A directed graph is 

I connected if the underlying undirected graph is connected 
(i.e. ignoring the directions of the edges). 

I strongly connected if each node can reach every other node 
by a “directed path”. 

A strongly connected component is a maximal strongly 
connected subgraph. That is, 

1. Each node in the subgraph can reach every other node in the 
subgraph by a directed path contained in the subgraph. 

2. The subgraph is not contained in any larger subgraph with 
this property. 
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Directed Graphs (cntd.) 

I The out-component of a set of nodes S ⊂ N is the set of 
nodes T ⊂ N that can be reached by a directed path starting 
from some node in S . 

I The in-component of a set of nodes S ⊂ N is the set of 
nodes T ⊂ N that can reach some node in S by a directed 
path. 

Note: the strongly connected component of a node i consists of 
the intersection of its out-component and its in-component. 
Proof: 

I Fix two nodes j and k in the intersection of i’s out-component 
and in-component. 

I j can reach i , because j is in i’s in-component. 
I i can reach k, because k is in i’s out-component. 
I So j can reach k (by a path through i). 
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Some Special Networks 

I A clique (or complete network) is a graph where all nodes 
are linked to each other. 

I A tree is a connected (undirected) graph with no cycles. 
I A connected graph is a tree if and only if it has n − 1 edges. 
I In a tree, there is a unique path between any two nodes. 

I A forest is a graph in which each component is a tree. 
I A star is a tree where one node (the center) is linked to all 
other nodes. 

I A ring (or circle, or cycle) is a connected graph where each 
node is linked to two others. 

I A bipartite graph is one that can be partitioned into two sets 
such that all links connect nodes in “opposite” sets. 

I Buyers&sellers, firms&workers, students&schools, men&women 14



Network Statistics 

Small networks can be visualized directly, but larger networks are 
harder to visualize and describe. 

It’s therefore useful to define several summary statistics to 
describe and compare networks (here focusing primarily on 
undirected graphs): 

I Degree distribution (how dense?) 
I Diameter and average path length (how tightly connected?) 
I Clustering (are friends-of-friends friends?) 
I Centrality (which nodes are central or important?) 
I Homophily (are nodes of the same “type” more likely to be 
linked?) 

The rest of today’s class introduces these summary statistics and 
discusses some applications. 
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Neighborhood and Degree 
The neighborhood, Ni , of node i is the set of nodes to which it is 
linked: Ni = {j : gij = 1}. 

For undirected graphs, the degree, di , of node i is its number of 
neighbors, or equivalently the cardinality of its neighborhood: 
di = ∑j gij = ∑j gji = #Ni . 

For directed graphs, 

I The out-degree of node i is ∑j gij . 
I The in-degree of node i is ∑j gji . 

One also sometimes seems the terms “out-neighbor” and 
“in-neighbor”. 

In applications, if a link from i to j means that i “influences” j , 
nodes with high out-degree are “influential.” 
If a link means that i “listens to” or “endorses” j (e.g., hyperlink 
to j), nodes with high in-degree are influential. 
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Mean Degree, Density, Sparseness 
¯The average (mean) degree, d , of an undirected network is 

1
d̄ = ∑ di . n i 

Note that if the network has a total of m edges, then we have 

∑ di = 2m. 
i 

¯Therefore, d = 2m/n. (Useful equation.) 

The density, ρ, of an undirected network is the fraction of all 
possible links that actually exist, given by 

m d̄ 
ρ = = . 

n (n − 1) /2 n − 1 
¯For large networks, often approximate as d/n. 

A network is sparse if ρ is small. 
I When discussing large networks, this is often taken to mean 
that ρ → 0 as n → ∞. 
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Degree Distributions 

The degree distribution, P (d), of a network describes the 
proportion of nodes that have different degrees d . 

I For a given graph, P (·) is a histogram: 
that is, P (d) is the fraction of nodes with degree d . 

I For a random graph model, P (·) is a probability distribution: 
that is, P (d) is the probability that a node has degree d . 

A graph is d-regular if all nodes have the same degree d 
(so P (d) is a degenerate distribution). 

I If a graph is d-regular with d odd, it must have an even 
number of nodes. (Why?) 
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Degree Distributions (cntd.) 

Two types of degree distributions for random graph models: 

I P (d) ≤ ce−αd for some constants α > 0 and c > 0: 
the tails of the distribution fall off exponentially (or faster): 
large degrees are very unlikely. 

I P (d) = cd−γ for some constants γ > 0 and c > 0: 
called a power-law distribution, the tails of the distribution 
are “fat”: large degrees are much less unlikely. 

I (Approximate) power laws appear in many settings, including 
distributions of income, city populations, and internet traffi c. 

I Also known as a scale-free distribution: a distribution that is 
unchanged (within a multiplicative factor) under a rescaling of 
the variable. 

I Appear linear on a log-log plot. 

These concepts will play an important role in coming lectures on 
random graph models. 
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Diameter and Average Path Length 
Let ` (i , j) denote the distance (shortest path length) between i 
and j . 

The diameter of a connected network is the greatest distance 
between any two nodes: 

diameter = max ̀  (i , j)
i ,j 

The average path length is the average distance between any two 
nodes: 

∑i 6=j ` (i , j)average path length = 
n (n − 1) 

Average path length is bounded from above by diameter. 
In some cases it is much shorter than diameter. 

If the network is not connected, one often checks the diameter and 
the average path length in the largest component. 
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Clustering 
Measures the extent to which my friends are friends with each 
other. 

The simplest such measure is the overall clustering coeffi cient 
Cl (g ), given by 

3 × number of triangles in the network 
Cl (g ) = ,

number of “potential triangles” 

where a “potential triangle” is a triple of distinct nodes (i , j , k) 
such that gij = gik = 1. 

I Formally, 
∑i ;j 6=i ;k 6=i ,j gij gik gjk Cl (g ) = . 

∑i ;j 6=i ;k 6=i ,j gij gik 

I Note that 0 ≤ Cl (g ) ≤ 1. 
I Also referred to as network transitivity: measures extent to 
which a friend of my friend is also my friend. 
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Clustering (cntd.) 
A different measure of clustering is based on first measuring the 
“individual clustering” for each node i , then averaging over nodes. 

The individual clustering for node i is 

number of triangles involving i
Cli (g ) = 

number of potential triangles centered at i 
∑j 6=i ;k 6=i ,j gij gik gjk 

= 
∑j 6=i ;k 6=i ,j gij gik 

1The average clustering coeffi cient is ClAvg (g ) = ∑i Cli (g ) . n 

Consider the undirected “windmill” network, where everyone is 
linked to the center and one other node. 
I Average clustering is close to 1, because Cli (g ) = 1 for 
everyone except the center. 

I Overall clustering is close to 0, because vast majority of 
potential triangles consist of the center and two individuals 
who are not linked. 
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Centrality Measures 
There are several measures that capture some notion of the 
“centrality” or “importance” of a node in a network. 
I Different measures capture different notions of centrality, 
which matter for answering different questions. 

I Degree centrality: Simply degree divided by (n − 1). 
I Closeness/decay centrality: “On average,” how close is the 
node to other nodes? 

I A simple measure: inverse average distance, or 
(n − 1) / ∑j ` (i , j) .6=i 

I A richer measure: decay centrality, given by ∑j =i δ
`(i ,j ) for 6 

some “decay parameter” δ ∈ (0, 1). (Depends on parameter.) 
I Betweenness centrality: How important is the node for 
connecting other nodes? 

I Recall definition from last class: 
Pk (i , j) /P (i , j)

Bk = ∑ (n − 1)(n − 2)
(i ,j )∈N :i 6=j ,k 6=i ,j 
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Eigenvector-Based Centrality Measures 
A more subtle and very important class of centrality measures are 
based on the self-referential idea that a node is important if it is 
connected to other important nodes. 
I These meaures cannot be computed separately for each node; 
instead, we compute the measure for all nodes simultaneously 
via a system of equations. 

I These measure are collective called eigenvector-based 
centrality measures (because the calculation involves 
eigenvectors). They have many applications in this course, 
including understanding: 

I How Google ranks webpages (PageRank). 
I Which agents in a social network are influential in forming the 
group’s long-run consensus opinion (DeGroot learning). 

I Which firms in a production network are most systemically 
important (Leontieff input-output analysis). 

I . . . and more. 
I We will study this class of measures and its applications next 
week (start today time permitting). 
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Homophily and Segregation 

Finally, another kind of network statistic is useful when nodes are 
of different types, or belong to different groups. 

I Individuals of different gender, race, age, political affi liation, 
religion, education, etc. 

I Liberal vs. conservative blogs (or other media) 

In these settings, a key question is the degree of homophily: the 
extent to which nodes of the same type are more likely to be 
connected. 

I “Similarity begets friendship” – Plato 
I “People love those who are like themselves” – Aristotle 
I “Birds of a feather flock together” – Proverb 
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Links Between Political Blogs in the US 

© ACM. All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 
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The Friendship Network at a US High School 

© source unknown. All rights reserved. This 
content is excluded from our Creative 
Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/ 
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Homophily and Segregation (cntd.) 

Issues relating to homophily, assortativeness, and segregation will 
arise repeatedly in this class. 

Later lectures will ask: 

I How strong an individual preference of “like for like” (or 
discrimination of “like against unlike”) is needed to result in 
extreme levels of segregation at the societal level? 

I How does homophily affect the speed of diffusion or 
contagion? 

I How does homophily affect whether crowds are wise or 
foolish? (i.e., whether people successfully aggregate their 
information, or fall prey to “groupthink” or “echo chambers”) 
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Measuring Homophily 

There are different ways of measuring homophily, but the simplest 
is just to look at the fraction of links that actually exist between 
individuals of different types, relative to what would be expected if 
links were formed uniformly at random. 

Suppose fraction p1 of the population is from group 1 and fraction 
p2 of the population is from group 2. (May also be other types.) 

If links were frandomly distributed, fraction p1
2 of links would 

connect two group-1 nodes, and fraction 2p1p2 would connect a 
group-1 node and a group-2 node. 

I If we fix a link and randomly assign the node at each end to 
type 1 or type 2, we get two type-1’s w/ prob p1

2 and one of 
each type w/ prob 2p1p2. 
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Measuring Homophily (cntd.) 

Hence, if the fraction of links within group 1 is significantly above 
p1
2, this is evidence for homophily (or “assortative matching”) 
within group 1. 

If the fraction of links between group 1 and group 2 is significantly 
below 2p1p2, this is evidence for homophily/assortativity within the 
groups, or segregation/disassortativity between them. 
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Introducting Eigenvector Centrality (time permitting) 

The simplest measure is eigenvector centrality: a non-zero vector 
C = (Ci )i ∈N such that, for some scalar λ > 0, we have 

λCi = ∑ gji Cj for all i ∈ N. 
j 6=i 

That is, the centrality of each node i is proportional to the 
weighted sum of the centrality of its neighbors. 

I Note that in this definition we have gji rather than gij . 
I This doesn’t matter for undirected graphs, but for directed 
graphs it says that a node’s centrality derives from the 
centrality of nodes that point to it. 

I Interpretation: when “important” or “prestigous” nodes point 
to you, this makes you important/prestigious. 

I Equations still hold if multiply C by a scalar. 
We typically normalize so that ∑i ∈N Ci = 1. 
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Eigenvector Centrality (cntd.) 

Eigenvector centrality (Ci )i ∈N is defined by: 

λCi = ∑ gji Cj for all i ∈ N. 
j 6=i 

It’s not immediately obvious whether we can find such a vector C : 
that is, whether such a measure exists or is unique. 

I n linear equations with n unknowns, so looks promising. . . 
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When is Eigenvector Centrality Well-Defined? 

For strongly connected networks, it turns out that eigenvector 
centrality is always well-defined. 

I Recall that a directed network is strongly connected if there 
exists a directed path between any two nodes. 

I In particular, every connected undirected network is strongly 
connected. 

I In general, the network is strongly connected iff for every pair � � 
`of nodes i , j , there exists a number ` such that g > 0.ij 

I Matrices g with this property are called irreducible. 
I That is, a network is strongly connected if and only if its 
adjacency matrix is irreducible. 
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When is Eigenvector Centrality Well-Defined? (cntd.) 
In matrix form, the equation for the Ci ’s is 

λC = gT C , 

Twhere λ is a scalar, C is a n × 1 vector, and g is the transpose of 
the n × n adjacency matrix (transposed because, for directed 
graphs, we care about the nodes that link to you, not the nodes 
you link to). 

TI That is, C is an eigenvector of g , with λ the corresponding 
eigenvalue. 

I The Perron-Frobenius theorem of linear algebra says that, for 
every irreducible non-negative matrix, its largest eigenvalue is 
positive, and all the components of the corresponding 
eigenvector are also positive. 

TI So, if we let λ be the largest eigenvalue of g , the 
corresponding eigenvector C is non-negative. 

I Thus, for any strongly connected network, the eigenvector 
centrality vector C is well-defined. 
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Interpretation as Long-Run Population Shares 
A useful interpretation of eigenvector centrality as the long-run 
outcome of a reproduction process (which also explains why it’s 
always well-defined for strongly connected networks): 

I Suppose a “virus” starts at a random node in the graph. 
I In each period, every virus sends one copy of itself along each 
link from the node where it is located. Then it dies. 

I (So there’s 1 virus in period 1, Ni viruses in period 2, 
∑j ∈Ni Nj viruses in period 3, etc.) 

I Letting this process run forever, the virus never dies out 
(because the network is strongly connected), and we can 
calculate the long-run fraction of viruses located at each node. 

I The long-run fraction of viruses located at node i equals Ci . 

(Why? Because the long-run fraction of viruses located at node i 
is proportional to the long-run fraction of viruses located at nodes 
that link to node i . This is the relationship that defines eigenvector 
centrality.) 
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Perron-Frobenius Theorem 

Theorem 
For every irreducible non-negative matrix A, its largest eigenvalue 
r1 is a positive real number, and the components of the 
corresponding eigenvector v1 are also all positive. 

The theorem also says more, but this is what we need. 

The proof is outside our scope, but we can give an informative 
informal argument. 
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Intuition for the Perron-Frobenius Theorem 
I Fix any non-negative vector x (0) ∈ Rn . Suppose that we can 
write it as a linear combination of the eigenvectors vi of A: 

x (0) = ∑ ci vi . 
i 

I Consider repeatedly multipying x (0) by A. (Matrix 
multiplication = copying viruses.) After t steps, we get the 
vector � �t 

t tx (t) = Atx (0) = At ∑ ci vi = ∑ ci ri vi = r1 ∑ ci r
r 

1 

i vi . 
i i i � �t 

riI Since r1 is the largest eigenvalue, → 0 as t → ∞, for r1 
tall i 6= 1. Therefore, x (t) /r1 → c1v1. That is, the limiting 

vector x (∞) is proportional to the largest eigenvector. 
I Since x (0) was non-negative and A is non-negative, each 
x (t) is also non-negative. Therefore, r1 must be positive (else 
oscillates), and every component of v1 must also be positive. 
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Other Insights from this Argument 

Just like with the viruses, the limiting vector x (∞) is proportional 
to the largest eigenvector. This vector defines eigenvector 
centrality. 

We might also ask how fast this convergence takes place. � �t 
r2I This is determined by how fast goes to 0 as t → ∞ r1� �t 

ri(since goes to 0 faster than this for each i ≥ 3).r1 

I Bigger gap between first and second eigenvalue =⇒ faster 
convergence. 
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